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1 Forms of The Axiom of Choice

1.1 The axiom of choice

We will need the axiom of choice later, so we will begin the course by introducing it now.

Definition 1.1. Let A be a nonempty set, and let Xα be a set for each α ∈ A. The
Cartesian product

∏
α∈AXα = {〈xα〉α∈A : aα ∈ Xα∀α ∈ A} is a function A→

⋃
α∈AXα

such that α 7→ xα..

Definition 1.2. The Axiom of choice says that if Xα 6= ∅ then
∏
α∈AXα 6= ∅.

Theorem 1.1 (Cohen). The axiom of choice is not implied by the other standard axioms
of set theory.

This is difficult to apply, but we will use provably equivalent statements.

1.2 Posets and Zorn’s lemma

Let X be a set.

Definition 1.3. A partial order on X is a relation “≤” on X that is

1. Transitive: if a ≤ y and y ≤ z, then x ≤ z

2. Reflexive x ≤ x for all x ∈ X

3. Anti-symmetric: if x ≤ y and y ≤ x, then x = y

Definition 1.4. A total order is a partial order where for all x, y ∈ X, either x ≤ y or
y ≤ x.

Example 1.1. Let S be a set and let P(S) be the set of subsets of S¿ Then ⊆ is a partial
order on P(S).

Example 1.2. On R, ≤ is a partial order (and in fact a total order).

Example 1.3. Let U ⊆ R2 be a domain. Say (x1, y1) ≤ (x2, x2) if y2 ≥ y1 and |y2− y1| ≤
|x2 − x1|. This is a partial order but not a total order.

Definition 1.5. Let (X,≤) be a poset with U ⊆ X. An element x ∈ U is maximal if
when y ∈ U and y ≥ x, we must have y = x. An element x ∈ X is an upper bound for
U if x ≥ u for all u ∈ U .

The definitions of minimal elements and lower bounds are analogous.

Definition 1.6. A chain in a partially ordered set (X,≤) is a subset Y ⊆ X such that
for all y, z ∈ Y , either y ≤ z or z ≤ y.
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Theorem 1.2 (Hausdorff Maximal Principal). Any nonempty poset (X,≤) has a maximal
chain Y ⊆ X.

Lemma 1.1 (Zorn). Let (X,≤) be a nonempty poset. If every chain in X has an upper
bound,, then X has a maimal element.

1.3 Proof sketch of Zorn’s lemma and the Hausdorff maximality principle

Here is another incarnation of the axiom of choice.

Theorem 1.3. Let S 6= ∅, and let F ⊆P(S) with F 6= ∅. Assume F is

1. down-closed: If A ⊆ B ∈ F , then A ∈ F

2. chain-closed: If C is a chain with C ⊆ F , then
⋃
C ∈ F .

Then F contains a maximal element.

Here is a sketch of the proof.

Proof. First, ∅ ∈ F , so F 6= ∅. Assume the result is false. THen for all A ∈ F , there
exists a nonempty B ∈ S \A such that A∪B ∈ F . By property 1, we may assume |B| = 1.
By the axiom of choice, there exists f : F → S such that f(A) ∈ S \A and A∪{f(A)} ∈ F .

At this point, the idea is to start at the empty set and keep constructing chains, then
taking the union of the chain, and then continuing. This requires a notion of the well-
ordering principle, so we will choose a different explanation for our sketch.

Call a subfamily T ⊆ F a tower if

1. ∅ ∈ T

2. A ∈ T =⇒ A ∪ {f(A)} ∈ T

3. T is chain-closed.

Towers exist (e.g. F). Any intersections of towers is a tower. So there exists a minimal
tower Tmin.

Call A ∈ Tmin a bottleneck1 if ∀B ∈ Tmin, either A ⊆ B or B ⊆ A. The idea is that
the set of bottlenecks is a tower. So Tmin is a chain. By property 3,

⋃
Tmin ∈ Tmin. So by

property 2,
⋃
T ∪ {f(

⋃
Tmin)} ∈ Tmin. This is impossible.

Here is how we prove the Hausdorff maximal principle:

Proof. Let (X,≤) be nonempty. Let F be the set of chains in X. This satisfies the
conditions of the theorem, which implies that there exists a maximal chain.

1This is not standard notation.
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We can prove Zorn’s lemma from this, as well.

Proof. Take an upper bound for a maximal chain Such an element is maximal.
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2 Point Set Topology

2.1 Topological spaces

A metric space defines a collection of open sets. To consider spaces without a metric, we
define a collection of open sets with the same properties. This yields a more general theory
than the theory of metric spaces.

Definition 2.1. Let X be a set. A topology on X is a a collection T of open subsets of
X such that

1. ∅, X ∈ T

2. If A ⊆ T , then
⋃
U∈A U ∈ T

3. If U1, . . . , Um ∈ T ¡ then
⋂m
i=1 Ui ∈ T .

The pair (X, T ) is called a topological space.2

Definition 2.2. A subset C ⊆ X is closed if X \ C (denoted Cc) is open.

Example 2.1. Every metric space is a topological space.

Example 2.2. For every set X, T = P(X) is called the discrete topology.

Example 2.3. For every set X, T = {∅, X} is called the trivial topology.

Example 2.4. For every set X, T = {U ⊆ X : U = ∅ or U c is finite} is called the
cofinite topology,

Example 2.5. If (X, T ) is a topological space, and Y ⊆ X¡ then TY = {U ∩ Y : U ∈ T }
is called the relative topology of T on Y .

2.2 Closure and convergence

Let (X, T ) be a topological space.

Definition 2.3. If Y ⊆ X, then V ⊆ Y is relatively open (resp. closed) in Y if
V = U ∩ Y , where U is open (resp. closed).

Definition 2.4. If A ⊆ X, Ao =
⋃
{U : U ⊆ A,U open} is the interior of A.

This is the largest open set contained in A.

Definition 2.5. If A ⊆ X, A =
⋂
{C : C ⊇ A,C closed} is the closure of A.

2People usually just refer to X as the topological space when T is understood.
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This is the smallest closed set contained in A.

Definition 2.6. A ⊆ X is dense if A = X.

Definition 2.7. The boundary of A ⊆ X is ∂A; = A \Ao.

Definition 2.8. A ⊆ X is nowhere dense if (A)o = ∅.

Definition 2.9. A neighborhood of x ∈ X is any U ∈ T such that x ∈ U . A neighbor-
hood of A ⊆ X is any U ∈ T such that A ⊆ U .

Definition 2.10. A point of closure of A is a point x ∈ X such that U ∩A 6= ∅ for all
neighborhoods U of x.

Proposition 2.1. A is the set of points of closure of A.

Proof. (⊇): Let x be a point of closure and let C ⊇ A. We want to show x ∈ C. If instead
x ∈ Cc, then Cc is a neighborhood of x disjoint from A.So x is not a point of closure, which
is a contradiction.

(⊆): Let x be a non-point of closure. Then there exists a neighborhood U 3 x such
that U ∩A = ∅. So U c is closed, x /∈ U c, and U c ⊇ A. Then x /∈ A.

Definition 2.11. Let (xn)∞n=1 be a sequence in X. Then xn converges to x in T (written
xn → x) if for every neighborhood U of x, there exists an n0 such that xn ∈ U for all
n ≥ n0.

Remark 2.1. Here are a few caveats. Convergence does not characterize points of closure
like it does for metric spaces. Also, limits of sequences are not necessarily unique in
topological spaces.

2.3 Generating topologies and bases

Definition 2.12. If T1, T2 are two topological spaces on X, then T2 is stronger (resp.
weaker) than T1 if T2 ⊇ T1 (resp. T2 ⊆ T1).

Lemma 2.1. Any intersection of topologies is a topology.

Corollary 2.1. Any E ⊆P(X) generates a topology T (E).

In this case, E is called a sub-base for the topology T (E).

Remark 2.2. Any family generates a unique topology, but a topology may be generated
by many different families.

Definition 2.13. A neighborhood base at x ∈ X is a collection N of neighborhoods of
x such that for all neighborhoods U 3 x, ther exists a V ∈ N such that x ∈ V ⊆ U . A
base for T is a family which includes a neighborhood base around every point.
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Proposition 2.2. Let E ⊆ T . Then E is a base for T if and only if every nonempty U ∈ T
is a union of members of E.

Proof. ( =⇒ ): Assume E is a base, and let ∅ 6= U ∈ T . THen for all x ∈ U , there exists
a Vx ∈ E such that x ∈ Vx ⊆ U . So U =

⋃
x∈U Vx.

(⇐= ): Let x ∈ U ∈ T . Then U =
⋃
V ∈E ′ V for some E ′ ⊆ E . So x ∈ for some V ∈ E ′.

Now x ∈ V ⊆ U .

These two characterizations generalize the notion of open balls in a metric space.

Proposition 2.3. If E ⊆P(X), then E is a base for some T if and only if

1.
⋃
E = X,

2. For all U, V ∈ E and for all x ∈ U∩V , there exists a W ∈ E such that x ∈ E ⊆ U∩V .

Proof. ( =⇒ ): Try doing this direction yourself.
( ⇐= ): Let T = {V ⊆ X : ∀x ∈ V,∃U ∈ E s.t. x ∈ U ⊆ V }. Check that T is a

topology, and then check that E is a base for T : If V1, V2 ∈ T and x ∈ V1 ∩ V2, then there
exist U1, U2 ∈ E such that x ∈ Ui ⊆ Vi for i = 1, 2. By the second property, there exists a
W ∈ E such that x ∈ W ⊆ U1 ∩ U2 ⊆ V1 ∩ V2. So V1 ∩ V2 ∈ T . Finally, E ⊆ T , and the
definition of T means that E concludes a neighborhood base at every point.

Unlike with σ-algebras, this means that it is easy to see how we generate a topology.

Corollary 2.2. If E ⊆P(X), then T (E) = {∅, X}∪{unions of finite intersections from E}.

Proof. Just show that T (E) is a topology.

Example 2.6. F ⊆ RR. For every m ∈ N, t1, . . . , tm ∈ R, x1, . . . , xm ∈ R, and ε > 0,
define U(t1, . . . , tm, x1, . . . , xm, ε) := {f ∈ F : |xi − f(ti)| < ε ∀i ≤ m}. Let E be the set of
all such U(t1, . . . , tm, x1, . . . , xm, ε). As an exercise, show that this is a base for T (E). We
claim that if (fn)n∈N is a sequence in F , then fn → f in T (E) iff fn → f pointwise. Next
time, we will show that this topology is not defined by a metric.
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3 Pointwise Convergence, Countability Axioms, Continuity,
and Weak Topologies

3.1 The topology of pointwise convergence

Last time we had the following example of a topology.

Example 3.1. Let F ⊆ RR, for example, f = C(R). For every m ∈ N, t1, . . . , tm ∈ R,
x1, . . . , xm ∈ R, and ε > 0, define U(t1, . . . , tm, x1, . . . , xm, ε) := {f ∈ F : |xi − f(ti)| <
ε∀i ≤ m}. Let E be the set of all such U(t1, . . . , tm, x1, . . . , xm, ε). We claim that if (fn)n∈N
is a sequence in F , then fn → f in T (E) iff fn → f pointwise. Next time, we will show
that this topology is not defined by a metric.

Proposition 3.1. E is a base for T .

Proof. We need to check two properties:

1. First, we need
⋃
E = F . Given f ∈ F and t1, . . . , tm ∈ R, let xi = f(ti). Then

f ∈ U(t1, . . . , tm, x1, . . . , xm, ε) for all ε > 0.

2. Let U(t1, . . . , tm, x1, . . . , xm, ε), U(s1, . . . , sn, y1, . . . , yn, δ) ∈ E . Consider f in their
intersection. Choose η so smal that (f(ti)−η, f(ti)+η) ⊆ (xi−ε, xi+ε) for all i and
same for δ. Now f ∈ U(t− 1, . . . , tm, s1, . . . , sn, f(t1), . . . , f(tm), f(s1), . . . , f(sn), η),
which is contained in the intersection of the first two sets.

Proposition 3.2. Let (fn)n∈N be a sequence in F . Then fn → f in T iff fn → f pointwise.

Proof. ( =⇒ ): Pick t ∈ R and ε > 0. Consider U(t, f(t), ε). There exists n0 such that
fn ∈ U(t, f(t), ε) for all n ≥ n0; i.e. |f(t)− fn(t)| < ε for all n ≥ n0.

(⇐= ): Let f ∈ F , and let U be a neighborhood of f . Because E is a base, there exists
U(t1, . . . , tm, x1, . . . , xm, ε) ⊆ U containing f . By shrinking ε if necessary, we may assume
that xi = f(ti) for every i. We know that fn(ti)→ f(ti). There exists n0 such that for all
n ≥ n0, |fn(ti)− f(ti)| < ε for all i ≤ m; i.e. fn ∈ U(t1, . . . , tm, x1, . . . , xm, ε).

3.2 Countability axioms and metrizability

Definition 3.1. A topology T on X is metrizable if it is generated by a metric on X.

There are natural and important topologies that are not metrizable. This is why we
care about point set topology.

Definition 3.2. A topological space (X, T ) is first countable at x if it has a countable
base at x. The space is first countable if it is first countable at every x.

Definition 3.3. A topological space (X, T ) is second countable if it has a countable
base.
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Definition 3.4. A topological space (X, T ) is separable if it has a countable dense subset.

Lemma 3.1. A metrizable space is first countable.

Proof. Let ρ generate T . Fix x ∈ X. The collection {B(x, r) : r > 0, r ∈ Q} is a
neighborhood base at x.

Lemma 3.2. The topology of pointwise convergence on RR is not first countable.

Proof. Suppose U1, U2, . . . contain f ∈ RR. We may replace if necessary so that Uj =

U(t
(j)
1 , . . . , t

(j)
m , x

(j)
1 , . . . , x

(j)
m , εj). Pick ε 6=∞, and pick t ∈ R \ {t(j)i : g ≥ 1, i = 1, . . . ,mj}.

Then U(t, f(t), ε) is not contained in U(t
(j)
1 , . . . , t

(j)
m , x

(j)
1 , . . . , x

(j)
m , εj) for all j.

Corollary 3.1. The topology of pointwise convergence is not metrizable.

3.3 Continuous functions

Definition 3.5. Let (X, TX) and (Y, TY ) be topological spaces, and let f : X → Y . The
function f is continuous at x if for every neighborhoddo f V of f(x), there exists a
neighborhood U of x such that f [U ] ⊆ V . f is continuous if it is continuous at every
point.

Proposition 3.3. f : X → Y is continuous if and only if f−1[U ] ∈ TX for every U ∈ TY .

Proof. The same proof from metric spaces works here.

Proposition 3.4. If TY = T (E), then f : X → Y is continuous if and only if f−1[U ] ∈ TX
for all U ∈ E.

Proof. The proof is the same as for the analogous statement for σ-algebras and measurable
functions.

Definition 3.6. Let K = R or C, and let (X, T ) be a topological space. Then B(X,K) is
the set of all bounded functions f : X → K. C(X,K) is the set of all continuous func-
tions f : X → K. BC(X,K) = B(X,K) ∩ C(X,K) is the set of bounded continuous
functions.

Definition 3.7. On B(X,K) or BC(X,K), the uniform norm is ‖f‖u := supx∈X |f(x)|,
and the uniform metric is ρu(f, g) := ‖f − g‖u.

Proposition 3.5. BC(X,K) is complete with the metric ρu.
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3.4 The weak and product topologies

Definition 3.8. Let X be a set, let ((Yα, Tα))α∈A be topological spaces, and let fα : X →
Yα for all α ∈ A. The weak topology generated by the fα is T

(⋃
α∈A{f−1

α [U ] : U ∈ Tα}
)
.

Definition 3.9. Let ((Yα, Tα))α∈A be topological spaces, let X :=
∏
α∈A Yα, and let πα :

X → Yα send (xβ)β∈A 7→ xα for all α ∈ A. The product topology on X is the weak
topology generated by (πα)α∈A.

The collection {π−1
α [U ] : α ∈ A,U ∈ Tα} is a subbase for this topology. The collection

{
⋂n
j=1 π

−1
αj [Uαj ] : α1, · · ·αn ∈ A,Uαj ∈ Tαj} is a base for this topology. Our previous

topology on RR was actually the product topology.
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4 Separation Axioms and Urysohn’s Lemma

4.1 Second countability and separability

Proposition 4.1. Every second countable topological space is separable. In metric spaces,
the converse is true.

Proof. Let E be a countable base for T . Pick one point xU ∈ U for all U ∈ E . Now
{xU : U ∈ E} is dense. Let y ∈ X, let V be a neighborhood of y. Now V =

⋃
U∈E ′ U for

some E ′ ⊆ E . If U ∈ E ′, then uU ∈ V , so V ∩ {xU} 6= ∅.
Let (X, ρ) be a separable metric space, and let A ⊆ X be countable and dense. Let

E = {Br(x) : x ∈ A, r > 0, r ∈ Q}. Check that this is a base:

1.
⋃
x∈AB1(x) = X by the density of A.

2. Let x, y ∈ A, r, s ∈ Q ∩ (0,∞). Let z ∈ Br(x) ∩ Bs(y). Pick δ > 0 with δ ∈ Q such
that B2δ(z) ⊆ Br(x) ∩ Bs(y). Let w ∈ A be such that ρ(z, w) < δ. Now Bδ(w) 3 z,
and Bδ(w) ⊆ B2δ(z) ⊆ Br(x) ∩Bs(y).

The reverse implication is not true in general, but you have to deal with a complicated
set theory construction.

4.2 Separation axioms

Definition 4.1. A topological space (X, T ) has property

1. T0: For all x, y ∈ X with x 6= y, there exists U ∈ T such that |U ∩ {x, y}| = 1.

2. T1: For all x, y ∈ X with x 6= y, there exists U ∈ T such that U ∩ {x, y} = {x}.

3. T2 (Hausdorff property): If x 6= y ∈ X, there exist U 6= V ∈ T such that
U ∩ T = ∅, x ∈ U , and y ∈ V .

4. T3 (regular): T1 and whenever x ∈ X and A ⊆ X is closed, there exist U, V ∈ T
such that U ∩ V = ∅, x ∈ U , and A ⊆ V .

5. T4 (normal): T1 and whenever A,B ⊆ X are closed and disjoint, there exist U, V ∈ T
open such that U ∩ V = ∅, A ⊆ U , and B ⊆ V .

Proposition 4.2. (X, T ) is T1 if and only if singletons are closed sets.

Proof. ( =⇒ ): Let {x} ∈ X. If y ∈ X \ {x}, then by T1, there exists U)y ∈ T such that
y inUy, x /∈ Uy. Now X \ {x} =

⋃
y Uy ∈ T .

(⇐= ): If x 6= y ∈ X, then X \ {x} is open and contains ybut not x.

Corollary 4.1. T4 =⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0.

14



Lemma 4.1. Any metric space (X, T ) is T4.

Proof. Assume A,B 6= ∅. A ⊆ {x : ρ(x,A) < ρ(x,B)}, and B ⊆ {x : ρ(x,A > ρ(x,B)},
where ρ(x,A) = infy∈A ρ(x, y). The function x 7→ ρ(x,A) is continuous, so these are open
sets.

4.3 Urysohn’s lemma

Lemma 4.2 (Urysohn). Let (X, T ) be T4 and let A,B ⊆ X be disjoint and closed. Then
there exists f ∈ C(X, [0, 1]) such that f |A = 0 and f |B = 1.

Remark 4.1. In metric spaces, we can just use the function

f(x) =
ρ(x,A)

ρ(x,A) + ρ(x,B)
.

The converse is true, as well; it is much easier to prove.

The idea is that if you had f , you could construct level sets (like when f = 1/3). We
try to reconstruct f using its level sets.

Lemma 4.3. Let ∆ = {k/2n : n ≥ 1, 0 < k < 2n}. Then there exists {Ur : r ∈ ∆} ⊆ T
such that

1. A ⊆ Ur ⊆ Bc for all r.

2. If r < s ∈ ∆, then U r ⊆ Us.

Proof. We want to find U1/2 such that A ⊆ U1/2 and U1/2 ⊆ Bc. By T4, there exist U ⊇ A
and V ⊇ B such that U ∩ V = ∅; i.e. U ⊆ V c ⊆ Bc, so U ⊆ Bc. Now let U1/2 := U .

Suppose we have Ur for r = k/2n n = 1, . . . ,m− 1. Consider Us, where s = d/2n. Let
r1 = (` − 1)/2n ,and r2 = (` + 1)/2n. Repeat the previous construction with the closed
sets U r and U cr2 . This gives us Us.

We can now prove Urysohn’s lemma.

Proof. Let {Ur : r ∈ ∆} be given by the lemma. Define

f(x) :=

{
inf{r ∈ ∆ : x ∈ Ur} ∃r ∈ ∆ s.t. x ∈ Un
1 x /∈

⋃
r∈∆ Ur

Suppose x ∈ X, 0 < f(x) < 1. Let ε > 0. Choose r1 < r2 ∈ ∆ ∩ (f(x) − ε, f(x)),
s ∈ ∆ ∩ (f(x), f(x) + ε). Now x ∈ U cr2 ⊇ (U r1)c, but x ∈ Us. Now Us ∩ (U r1)c us a
neighborhood V of x and f [V ] ⊆ (f(x)− ε, f(x) + ε).

Here is the final (but not very useful) separation axiom.
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Definition 4.2. A topological space (X, T ) is T3 1/2 if for all x ∈ X and A ⊆ X closed
with x /∈ A, there exists f ∈ C(X, [0, 1]) such that f(x) = 0 and f |A = 1.

This is a weakened version of the condition Urysohn’s lemma which is weaker than T4

and stronger than T3.
Next time, we will use Urysohn’s lemma to prove the following result.

Theorem 4.1 (Tietze’s extension theorem). Let (X, T ) be T4, let A ⊆ X be closed, and
let f ∈ C(A, [a, b]). Then there exists F ∈ C(X, [a, b]) such that F |A = f . The same holds
if C(X, [a, b]) is replaced with C(X,K), where K = R or C.

16



5 Tietze’s Extension Theorem and Compactness

5.1 Tietze’s extension theorem

Let X be a normal topological space.

Theorem 5.1 (Tietze’s extension theorem). Let (X, T ) be T4, let A ⊆ X be closed, and
let f ∈ C(A, [a, b]). Then there exists F ∈ C(X, [a, b]) such that F |A = f . The same holds
if C(X, [a, b]) is replaced with C(X,K), where K = R or C.

Proof. Without loss of generality, translate so that a = 0. We claim that if f ∈ C(A, [0, b]),
then there exists g ∈ C(X, [0, b/3]) such that 0 ≤ f − g ≤ 2b/3. Let B = {x ∈ A : f(x) ≤
b/3}, and let C = {x ∈ A : f(x) ≥ 2b/3}. These are relatively closed in A, and since A
is closed, they are closed in X. By Urysohn’s lemma, there exists g ∈ C(X, [0, b/3]) such
that g|B = 0 and g|C = b/3. Now check that

1. g|A ≤ f ,

2. f ≤ g|A + 2b/3.

Let g1 be given by the claim, and let f1 = f − g1|A. Apply the claim again. There
exists g2 ∈ C(X, [0, 2/3 · b/3]) such that 0 ≤ f1 − g2|A ≤ (2/3)2b. By recursion, we find
gn ∈ C(X, [0, (2/3)n−1 · b/3]), and f − (

∑n
i=1 gi)|A ≤ (2/3)nb. Now, for any m ≥ n ≥ n,∥∥∥∥∥

m∑
i=1

gi −
m∑
i=1

gi

∥∥∥∥∥
u

=

∥∥∥∥∥
m∑

i=n+1

gi

∥∥∥∥∥
u

≤
m∑
n+1

‖gi‖u ≤
m∑

i=n+1

(2/3)i−1 b

3
≤ C(2/3)nb.

So F :=
∑∞

i=1 gi ∈ C(X, [0, b]), and if x ∈ A,

|f(x)− F (x)| = lim
n→∞

|f(x)−
n∑
i=1

gi(x)| = 0.

Now suppose f ∈ C(X,R). Consider f ′ = f/(1 + |f |) ∈ C(X, (−1, 1)). This has an
extension F ′ ∈ C(X, [−1, 1]). Let H = {x : F ′(x) = ±1}. This is closed and disjoint from
A. So by Urysohn’s lemma, there exists h ∈ C(X, [0, 1]) such that h|A = 1 and h|H = 0.
Let G = F ′ ·h. Now G ∈ C(X, (−1, 1)), and G|A = f ′. Now define F := G/(1−|G|). Then
F ∈ C(X,R) such that F |A = f .

For X = C, split into the real and imaginary parts of f .

5.2 Compact spaces

Definition 5.1. A topological space X is compact if every open cover has a finite sub-
cover. The same is true for a subset of X. A subset A ⊆ X is precompact if A is
compact.
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Remark 5.1. The characterization of compactness in metric spaces using sequences turns
out to be not as useful in analysis, even though it can be defined in point set topology in
general.

Definition 5.2. We say a family F ⊆ P(X) has the finite intersection property
(FIP) if F1 ∩ · · · ∩ Fm 6= ∅ whenever m ∈ N and F1, . . . , Fm ∈ F .

Lemma 5.1. A topological space X his compact if and only if every FIP family of closed
sets F has

⋂
F 6= ∅.

Proof. ( =⇒ ): Let F be an FIP family of closed sets. Let U = {X \ F : F ∈ F}. For any
X \F1, . . . , X \Fm ∈ U , we know that there exists x ∈ F1 ∩ · · · ∩Fm, so x /∈

⋃m
i=1(X \Fi).

So by compactness
⋃
U 6= X. So

⋂
F 6= ∅.

(⇐= ): The reverse implication is just the same steps, but in reverse order.

Proposition 5.1. If X is compact and A ⊆ X is closed, then A is compact.

Proof. Suppose U is a family of open sets in X such that A ⊆
⋃
U . Define V = U∪{X \A}.

This is an open cover of X, so it has a finite subcover U1 . . . , Um ∈ U such that X =
(X \A) ∪

⋃m
1=1 Ui. So U1, . . . , Um form a finite subcover of A.

5.3 Compact Hausdorff spaces

Some topologies, like the trivial topology, give us undesirable compact spaces. We add the
condition of Hausdorff to get spaces we do want.

Proposition 5.2. Let X be Hausdorff, let F ⊆ X be compact, and let x ∈ X \ F . Then
there exist disjoint neighborhoods U 3 x and V ⊆ F .

Proof. For all y inF , we have y 6= x, so there exist disjoint open sets Uy 3 x and Vy 3 y.
Now F ⊆

⋃
y Vy, so there exist y1, . . . , ym ∈ F such that F ⊆ Vy1 ∪ · · ·Vym . Now F ⊆ V :

Vy1 ∪ · · ·Vym is disjoint from U := Uy1 ∩ · · · ∩ Uym . U is an open neighborhood of x.

Proposition 5.3. A compact subset of a Hausdorff space is closed.

Proof. If F is a compact subset of X, then every x ∈ X setminusF admits an open U 3 x
such that F ∩ U = ∅. So X \ F =

⋃
ux, so F is closed.

Proposition 5.4. A compact Hausdorff space is normal.

Proof. Let A,B ⊆ X be disjoint and closed. A and B are compact. So for all x ∈ A, there
exist disjoint neighborhoods Ux 3 x and Vx ⊇ B. Now {Ux : x ∈ A} is an open cover. so
there exist Ux1 ∪ · · · ,∪Uxn ⊇ A disjoint from Vx1 ∩ · · · ∩ Vxn ⊇ B.
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5.4 Continuous functions on compact spaces

Proposition 5.5. If X is compact and f : X → Y is continuous, then f(X) is compact.

Proof. Let U be an open cover of f(X). Then f−1[U ] = {f−1(U) : U ∈ U} is an open
cover of X. By compactness, there exists a finite subcover f−1[U1], . . . , f−1[Um]. Then
U1 ∪ · · · ∪ Um ⊇ f(X) is an open cover.

Corollary 5.1. If Y = R, then extreme values are obtained. So C(X) = BC(X).

Proposition 5.6. Let X be compact, Y be Hausdorff, and let f : X → Y be a continuous
bijection. Then f is a homeomorphism; i.e. f−1 is also continuous.

Proof. Let C ⊆ X be closed. Then C is compact, so f(C) is compact. Then f(C) is closed,
as Y is Hausdorff. So f sends closed sets to closed sets; i.e. f−1 is continuous.
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6 Tychonoff’s Theorem

6.1 Locally compact spaces

Sometimes, we want to generalize results for compact spaces to spaces that are not quite
compact but can be broken up into compact pieces.

Definition 6.1. A topological space X is locally compact if for every x ∈ X there exists
a neighborhood U of x such that U is compact.

Example 6.1. Rn is not compact, but it is locally compact.

6.2 FIP closed families

Theorem 6.1 (Tychonoff). Suppose 〈xα〉α∈A is a collection of compact sets. Then
∏
α∈AXα

is also compact.

We will prove a special case of this theorem.3

Theorem 6.2. Suppose 〈Xα〉α∈A is a collection of compact, Hausdorff sets. Then
∏
α∈AXα

is also compact and Hausdorff.

Recall that we showed last time that X is compact if any FIP family F of closed sets
has

⋂
F 6= ∅.

Lemma 6.1. Let X be a topological space, and let F be an FIP closed family. Then there
exists a maximal FIP closed family G ⊇ F .

Proof. Let Γ be the collection of families G ⊆P(X) such that G consists of closed sets, is
FIP, and G ⊆ F . We will use Zorn’s lemma. Let’s verify the conditions:

1. F ∈ Γ, so Γ 6= ∅.

2. Every chain Λ ⊆ Γ has an upper bound. Check that
⋃

Λ ∈ Γ; the crucial property is
that

⋃
Λ is FIP. Let C1, . . . , Cm ∈

⋃
Λ Then Ci ∈ Gi ∈ Λ for all i = 1, . . . ,m. Then

there exists ii ≤ m such that C1, . . . , Cm ∈ Gi0 . There C1 ∩ · · · ∩ Cm 6= ∅.

Remark 6.1. This theorem actually needs Zorn’s lemma. It is a theorem from the 1970s
that it is possible to choose topological spaces such that Tychonoff’s theorem implies Zorn’s
lemma.

Corollary 6.1. X is compact if and only if every maximal FIP closed family F has
⋂
F 6=

∅.

3Professor Austin has never seen an application of Tychonoff’s theorem where the spaces were not
Hausdorff.
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Proof. (⇐= ): Let F be an arbitray FIP closed family. If F ⊆ G, then
⋂
F ⊇ G 6= ∅.

Lemma 6.2. Let X be any topological space, and let F be a maximal FIP closed family.

1. If C1, . . . , Cm ∈ F , then C1 ∩ · · · ∩ CmF .

2. If C ⊆ X is closed and C ∩ F 6= ∅ for all F ∈ F , then C ∈ F .

Proof. For the first statement, let F ′ = {C1 ∩ · · · ∩ Cm : m ∈ N, C1, . . . , Cm,∈ F}. Now
F ⊆ F ′, so F = F ′.

For the second statement, let F ′′ = F ∪{C}. This is still FIP: if D1, . . . , Dm ∈ F , then
C ∩ (D1 ∩ · · · ∩Dm) 6= ∅, as D1 ∩ · · · ∩Dm is in F by property 1.

Remark 6.2. IfX is compact, then every maximal FIP closed family equals {C : C closed , C 3
x} for some x ∈ X.

Lemma 6.3. Let X be a topological space. The following are equivalent:

1. X is T3.

2. If U ⊆ X is an open neighborhood of x, then there exists an open V 3 x such that
V ⊆ U .

Proof. X \U is a closed set not containing x. T3 is the statement that there is a closed set
containing x and an open set in U not intersecting the closed set X \ U .

6.3 Proof of Tychonoff’s theorem

We are now ready to prove Tychonoff’s theorem.

Proof. Suppose Xα is compact, Hausdorff for all α ∈ A. To show that X is Hausdorff, let
x = 〈xα〉 , y = 〈yα〉 ∈ C, with x 6= y. So there exists an α such that xα 6= yα. Then there
exist disjoint Uα 3 xα and vα 3 yα (because Xα is Hausdorff). Now U = π−1

α [Yα] 3 x, and
V = π−1

α [Vα] 3 y.
To show that X is compact, let F be a maximal FIP closed family in X.

• Step 1: Find a good point candidate to be in the intersection of elements of F : For
all α ∈ A, define Fα = {πα(F ) : F ∈ F}. This collection is FIP;

πα(F1) ∩ πα(Fm) ⊇ πα(F1 ∩ · · · ∩ Fm) 6= ∅.

Let Gα := {πα(F ) : F ∈ F}. This is an FIP closed family. By the compactness of
Xα, there exists xα ∈

⋂
Gα . Let x = 〈xα〉α∈A.
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• Step 2: Let Vα be any open set containing xα.

xα ∈
⋃
Gα =⇒ Vα ∩ πα(F ) 6= ∅ ∀F ∈ F

=⇒ Vα ∩ πα(F ) 6= ∅ ∀F ∈ F
=⇒ π−1

α [Vα] ∩ F 6= ∅ ∀F ∈ F .

So π−1
α [Vα] ∈ F for all α and for all open Vα 3 xα.

• Step 3: Show that x ∈ F for all F ∈ F . It is enough to check that U ∩ F 6= ∅ for
all F ∈ F when U is an open neighborhood of x. It is enough to check for open sets
in a neighborhood base. That is, we only need to check U =

⋂m
j=1 π

−1
αj [Uαj ] for all

open Uα 3 xα. Because every xαj is Hausdorff, there exists an open set Vαj such that

xαj ∈ Vαj ⊆ V αj ⊆ Uαj . Now, by step 2, π−1
αj [V αj ] ∈ F for all j. So

U ∩ F =

 n⋂
j=1

π−1
αj [Uαj ]

 ∩ F ⊇
 n⋂
j=1

π−1
αj [V αj ]

 ∩ F 6= ∅.

So x ∈
⋂
F .
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7 The Arzelà-Ascoli Theorem

7.1 Compactness of subsets of C(X)

Last time, we proved Tychonoff’s theorem, which says that a product of compact spaces is
compact. Really, we want to think about

∏
α∈AXα as the set of functions f : A→

⋃
αXα

sending α 7→ xα, where xα ∈ Xα for all α. in analysis, finding compactness of spaces and
subspaces of functions is very useful and important.

For this lecture, we will assume X is a compact, Hausdorff space. We will let C(X) =
C(X,C) (although everything here is true for R instead of C. We also denote

ρu(f, g) = ‖f − g‖u = sup
x∈X
|f(x)− g(x)|.

We know that (C(X), ρu) is a complete metric space. This is a big space. We will identify
its compact subspaces. Let F ⊆ C(X). When is it closed and totally bounded? The point
of this theorem is to give conditions for totally boundedness.

Definition 7.1. A family F is equicontinuous at x ∈ X if for any ε > 0, there exists
a neighborhood U 3 x such that |f(x) − f(y)| < ε for all y ∈ U and for all f ∈ F . F is
equicontinuous if it is equicontinuous at every point.

This is the same neighborhood U for all f ∈ F .

Definition 7.2. A family F ⊆ C(X) is pointwise bounded if the set {f(x) : f ∈ F} is
bounded for all x ∈ X.

7.2 Statement and proof of the theorem

Theorem 7.1 (Arzelà-Ascoli). A subspace F is totally bounded if and only if it is equicon-
tinuous and pointwise bounded. Moreover, F is compact in (C(X), ρu).

Example 7.1. If X has a compact metric ρ, then F is equicontinuous if for all x ∈ and
ε > 0, there exists a δ > 0 such that |f(x) − f(y)| < ε for all y such that ρ(x, y) < δ (for
all f ∈ F).

Example 7.2. Any finite subset of C(X) is equicontinuous.

Example 7.3. Let X = [−1, 1]. Let F be the sequence of functions which are 0 on [−1, 0]
and increase continuously to 1 (with steeper and steeper slope). This sequence converges
to 1(0,1], which is not in F . This family is not totally bounded, and the ever-increasing
steepness at 0 makes this family not equicontinuous.

We will only prove one direction of the equivalence.4

4Professor Austin says that the other direction is not very useful, in his experience.
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Proof. (⇐= ): Let ε > 0. We will cover F with finitely many subsets of ρu-diameter < 4ε.
For every x ∈ X, there exists a neighborhood U 3 x such that |f(y) − f(x)| < ε for all
y ∈ Ux and f ∈ F . By compactness, there exists a finite subcover X = Ux1 ∪ · · · ∪ Uxm .
For each i = 1, . . . ,m, the set {f(xi) : f ∈ F} is bounded. So

⋃m
i=1{f(xi) : f ∈ F} is

bounded. That is, there exists a finite B ⊆ C such that for all i and f ∈ F , there exists a
z ∈ B such that |f(xi)− z| < ε.

For each ϕ ∈ Bm, define Fϕ = {f ∈ F : |f(xi) − ϕ(xi)| < ε ∀i = 1, . . . ,m}. To finish,
condier f, g ∈ Fϕ. We know that |f(xi) − g(xi)| < 2ε fpr a;; i = 1, . . . , n. For any other
y ∈ X, we have y ∈ Uxi for some i, so

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− g(xi)|+ |g(xi)− g(y)|
< ε+ 2ε+ ε

= 4ε.

So ‖f − g‖u ≤ 4ε for all f, g ∈ Fϕ. This gives total boundedness.

Remark 7.1. F is compact because it is still totally bounded. In general, closure preseves
total boundedness.

7.3 Alternate proof of Arzelà-Ascoli

Here is an alternative proof.

Proof. ( ⇐= ): Let F be equicontinuous and pointwise bounded. Let Dx be a closed,
bounded disc in the complex plane containing {f(x) : f ∈ F}.We can think of F ⊆∏
x∈X Dx, which is a compact product by Tychonoff’s theorem. The following lemma (left

as an exercise) completes the proof.

Lemma 7.1. Let F be closed and equicontinuous in C(X). Then

1. Restricted to F , the uniform topology on C(X) and the product topology on
∏
x∈X Dx

are the same.

2. F is also closed as a subset of
∏
x∈X Dx.

7.4 Arzelà-Ascoli in Rn

In general, we can extend Arzelà-Ascoli to spaces that are not compact but made of count-
ably many compact pieces. Let’s see how this works in Rn. Let (fn)n∈N ⊆ C(Rn) and
f ∈ C(Rn). These are not even necessarily bounded. What is the appropriate notion of
convergence for them?

Definition 7.3. The sequence fn → f locally uniformly if fn|K → f |K uniformly for
all bounded K ⊆ Rn.
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Theorem 7.2. If (fn)n∈N ⊆ C(Rn) is equicontinuous and pointwise bounded, then there
exist f ∈ C(Rn) and a subsequence fn(k) → f locally uniformly as k →∞.

Proof. For any r ∈ N, Arzelà-Ascoli gives that {fn : Br(0)} is totally bounded in C(Br(0)).
By a diagonal argument, there exists a subsequence (fn(k))

∞
k=1 such that fn(k)|Br(0)

con-

verges uniformly to some f (r) ∈ C(Br(0)). By the uniqueness of limits, we have f
(r)

Br(0)
=

f (r) for all r < s. So there exists a function f : Rn → C such that f (r) = f |
Br(0)

for all r

and f ∈ C(Rn). This is the same thing as locally uniform convergence fn(k) → f .

Remark 7.2. We can think of this proof as Arzelà-Ascoli applied to the image of F in∏∞
r=1C(Br(0)).

Example 7.4. In BC(R), consider {fα(x) = eiα : 1 ≤ α ≤ 2}. This is pointwise bounded,
and it is uniformly equicontinuous by the mean value theorem. Let 1 ≤ α < β ≤ 2. Then
ρu(fα, fβ) = 2.
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8 The Stone-Weierstrass Theorem

8.1 Algebras of functions

Last time, we characterized compact (in some sense ‘small’ subsets of C(X)). This time, we
will characterize larger subsets, in the sense that A ⊆ C(X) is dense. This also generalizes
the classic Weierstrass approximation theorem.

Let X be a compact Hausdorff space. In this lecture, we will denote C(X) = C(X,R).

Definition 8.1. A subset A ⊆ C(X) separates points if for all distinct x, y ∈ X, there
exists a function f ∈ A such that f(x) 6= f(y).

Definition 8.2. An algebra of functions is a linear subspace A ⊆ C(X) such that if
f, g ∈ A, then fg ∈ A.

Definition 8.3. A lattice of functions is a linear subspace A ⊆ C(X) such that if f, g ∈ A,
then max(f, g),min(f, g) ∈ A.

Definition 8.4. A vanishes at x ∈ X if f(x) = 0 for all f ∈ A. A is nowhere vanishing
if it does not vanish at any x ∈ X.

This means that for every x ∈ X, there is some f ∈ A such that f(x) 6= 0.

Theorem 8.1 (Stone-Weierstrass). Let A be an algebra, closed under ρu, and separate
points.

1. If A is nowhere vanishing, then A = C(X).

2. Otherwise, there exists some x0 ∈ X such that A = {f ∈ C(X) : f(x0) = 0}.

R2 is an algebra over R with the multiplication (x, y) · (u, v) := (xu, yv).

Lemma 8.1. As an algebra over R, the only subalgebras of R2 are {(0, 0)}, {0} × R,
R× {0}, {(t, t) : t ∈ R}, and R2.

Proof. Let A be a subalgebra of R2. We may assume that dim(A) = 1. Let (x, y) ∈ A.
Then x2, y2 ∈ A. These two ordered pairs must satisfy a linear relation, so x = 0, y = 0,
or x = y.

Remark 8.1. This is a special case of Stone-Weierstrass. If X = {1, 2}, then C(X) = R2.

Lemma 8.2. There exists a sequence (pn)n of real polynomial with pn(0) = 0 such that
pn(t)→ |t| uniformly for t ∈ [−1, 1].

Proof. Consider the Maclaurin expoansion of
√

1− s, where 0 ≤ s < 1. Apply this, using
the fact that |t| = +

√
1− (1− t2).5

5This is the way Folland proves this lemma. There are lots of equally good ways to prove this.
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Lemma 8.3. Let A be a closed subalgebra of C(X), Then f ∈ A =⇒ |f | ∈ A, and A is
a lattice.

Proof. Let f ∈ A with m := ‖f‖u > 0. By considering |f/m| = (1/m)|f |, we may assume
that m ≤ 1. Let (pn)n be given by the previous lemma. Then pn ◦ f converges uniformly
to |f | as n→∞. All the pn ◦ f lie in A, as A is an algebra. Since A is closed, |f | ∈ A.

If f, g ∈ A, max(f, g) = (1/2)|f + g| + (1/2)|f − g|, and min(f, g) = −max(−f,−g).
So these are still in A.

8.2 Proof of the theorem

Now we can prove the theorem.

Proof. Suppose A ⊆ C(X) is a closed lattice that separates points. Also, assume A is
nowhere vanishing.

Step 1: For all x 6= y ∈ X consider Ax,y = {(f(x), f(y)) : f ∈ A}. Then Ax,y is a
algebra of R2, separating points and nowhere vanishing. So Ax,y = R2 for all x, y. Thus, for
any f ∈ C(X) and x, y ∈ X, there exists a function gx,y ∈ A such that g − x, y(x) = f(x)
and gx,y(y) = f(y).6

Step 2: First, here is the idea: Pin down a point x, and vary y. Each gx,y agrees with
f at at least 2 points. Moreover, gx := maxy gx,y must satisfy gx(x) = f(x) and gx ≥ f
everywhere. Then we use compactness to only talk about finitely many points.

Fix x ∈ X. For all y ∈ X, we have gx,y, as above. Fix ε > 0. Now there exists an open
set Uy 3 y such that gx,y|Uy > f |Uy − ε. By compactness, there exists X = Uy1 ∪ · · · ∪Uym .
Now let gx := ax(g−x, y1, . . . , g−x, ym) ∈ A. We still have g(x) = f(x), and for all z ∈ X¡
there exists an i such that z ∈ Ux,yi . So gx(z) ≥ gx,yi(z) > f(z)− ε; i.e. gx(x) = f(x), and
fx > f − ε everywhere.

Step 3: For every x ∈ X, there exists a neighborhood Vx 3 x such that gx|Vx <
f |Vx + ε. By compactness there exists a finite subcover X = Vx1 ∪ · · · ∪ Vxm . Let g =
min(gx1 , . . . , gxm). Now g < f + ε everywhere, and g > f − ε from step 2.

If A vanishes at x0 ∈ X, then it can’t vanish anywhere else because it separates points.
Rerun the previous proof, just altering Step 1. We know that A ⊆ {f ∈ C(X) : f(x0) = 0}.
If x 6= y ∈ X, and (x0) = 0, then we just need to show that there exists a gx,y ∈ A such
that g − x, y = f(x) and gx,y = f(y). The proof is the same, except the subalgebra we get
is Ax0,y = {0} × R.

Theorem 8.2. Let B ⊆ C(X) be an algebra that separates points. Then

1. If B is nowhere vanishing, then B is dense in C(X).

2. Otherwise, there exists x0 ∈ X such that B is dense in {f ∈ C(X) : f(x0) = 0}.
6It looks like we are using the axiom of choice here. You don’t actually need it for this.
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Proof. Let A = B. This is still an algebra, and we can use the other version of the
theorem.

8.3 The complex Stone-Weierstrass theorem

What about C(X,C)?

Definition 8.5. A *-algebra over C is an algebra such that f ∈ A =⇒ f ∈ A.

Theorem 8.3 (complex Stone-Weierstrass). Let A ⊆ C(X,C) be a closed *-algebra that
separates points. Then

1. If B is nowhere vanishing, then B is dense in C(X).

2. Otherwise, there exists x0 ∈ X such that B is dense in {f ∈ C(X) : f(x0) = 0}.

Example 8.1. What if the algebra is not a *-algebra? Here is a counterexample in this
case. Let X = {z ∈ C : |z| = 1}, and let A be the set of complex polynomials in C(X,C).
We cannot approximate z 7→ z by members of A.
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9 The Baire Category Theorem

9.1 Statement and proof of Baire’s theorem

On R, is 1Q a pointwise limit of continuous functions? We will be able to answer this
question and many more.

Let (X, ρ) be a complete metric space. Recall that A ⊆ X is nowhere dense if
(A)o = ∅.

Theorem 9.1 (Baire category theorem). Let (Un)∞n=1 be a sequence of dense, open subsets
of X. Then

⋂∞
n=1 Un is still dense in X. Equivalently, X is not a countable union of

nowhere dense sets.

Remark 9.1. The 2nd statement is the same statement but taking complements of all the
sets involved.

Remark 9.2. This does not hold for uncountable intersections. For example, if X = [0, 1],
we can define Ux = [0, 1] \ {x} for each x ∈ X. Then

⋃
x Ux = ∅.

Proof. Let x ∈ X, δ > 0. We must show that Bδ(x)∩
⋂∞
n=1 Un 6= ∅. First, Bδ(x)∩U1 6= ∅;

this intersection is open. Pick B2δ1(x1) ⊆ Bδ(x)∩U1, where 2δ1 ≤ δ. Then Bδ1(x1)∩U2 6=
∅; this intersection is also open. Pick B2δ2(x2) ⊆ Bδ1(x1) ∩ U2 such that 2δ2 ≤ δ1.
Continue this recursively. The end result is we get balls Bδi(xi) with i ≥ 1 such that
B2δi+1

(xi+1) ⊆ Bδi(xi) ∩ Ui+1 and δu+1 ≤ δi/2.
This tells us that δi ≤ C/2i for some constant C. We also get that Bδj (xj) ⊆ Bδi(xi)

for all j ≥ i. So ρ(xj , xi) < δi for all j ≥ i ≥ 1, which means that the sequence (xi)
∞
i=1

is Cauchy. By completeness there exists a limit y = limi xi. Moreover, y ∈ Bδi(xi) ⊆
B2δi(xi) ⊆ Ui for all i. Similarly, y ∈ Bδ(x).

The same proof gives a slightly more general statement.

Theorem 9.2. If V ⊆ X is open with V 6= ∅ and (Un)∞n=1 is open such that Un ∩ V ⊇ V
for all n. Then (

⋂∞
n=1 Un) ∩ V ⊇ V .

9.2 Meager and residual sets

Definition 9.1. Let X be a topological space. Then A ⊆ X is of first category7 (or
meager) if it is a bountable union of nowhere dense sets. A ⊆ X is of second category
(or non-meager) otherwise. A ⊆ X is co-meager (or residual) if Ac is a meager set.

Example 9.1. The ambient space is important. N is meager inside R but residual in N.

Corollary 9.1. Let (X, ρ) be a complete metric space.

7This was Baire’s original terminology. I think meager is a much more intuitive term, though.
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1. If X =
⋃∞
n=1 Fn, where each Fn is closed, and U ⊆ X is a nonempty open set, then

there exists a nonempty open V ⊆ U and n ∈ N such that V ⊆ F on.

2. If X =
⋃∞
n=1An, and U ⊆ X is a nonempty open set, then there exists a nonempty

open V ⊆ U and n ∈ N such that V ⊆ (An)o.

3. The collection of residual sets is closed under countable intersections.

4. The collection of meager sets is closed under countable unions.

Corollary 9.2. If R \Q =
⋃∞
n=1En, then there exists an n such that En ⊇ (a, b) for some

a < b.

Proof. The given condition implies that R =
⋃
m{qm} ∪

⋃∞
n=1En, where (qm)m is an

enumeration of Q. Now apply Baire category. Either some {qm} or some En is dense in
some (a, b). This cannot be any of the {qm}.

Corollary 9.3. Q is not the countable intersection of dense open sets.

9.3 The Baire-Osgood theorem

Theorem 9.3 (Baire-Osgood). Let (X, ρ) be a complete metric space, and let (fn)n ⊆
C(X,R) be such that fn → f pointwise. Let A be the set of continuity points of f . Then
A is residual.

Proof. Call the oscillation of f at x ∈ X

ωf (x) := inf
δ>0

sup
y,z∈Bδ(x)

|f(y)− f(z)|.

f is continuous at A if and only if ωf = 0. So X \ A = {x : ωf (x) 6= 0} =
⋃∞
k=1{x : ωf ≥

1/k}. By the Baire category theorem, it is enough to show that {x : ωf (x) > ε} is closed
and nowhere dense for all ε > 0.

To show that this is closed, let x /∈ {x : ωf (x) > ε}. That is, let ωf (x) < ε. Then there
exist δ > 0 and ε < ε such that |f(y)− f(z)| ≤ ε′ for all y, z ∈ Bδ(x). If x′ ∈ Bδ/2(x), then
Bδ/2(x′) ⊆ Bδ(x). Then for all y, z ∈ Bδ/2(x′), we have y, z ∈ Bδ(x). So |f(y)− f(z)| ⊆ ε;
i.e. ωf (x′) ≤ ε′ < ε. So {x : ωf (x) < ε} is open.

Now let’s show that {x : ωf (x) > ε} is nowhere dense. Suppose U is a nonempty open
set. Let En :=

⋂
i,j≥n{x : |fi(x) − fj(x)| ≤ ε}. These are closed, and X =

⋃
nEn. Then

there exists an n and a nonempty open set V ⊆ U ∩ Eon containing Bδ(x) 3 y, z. Then
|fi(y) − f(y)| ≤ ε for all i ≥ n. Also, ωf (x) = 0, so tjere exists |delta′ < δ such that
|fi(y)− fi(z)| ≤ ε for all y, z ∈ Bδ′(x). By the triangle inequality, |f(y)− f(z)| ≤ 3ε. This
is a contradiction because |f(y)− f(z)| ≥ 4ε.

Corollary 9.4. 1Q is not the pointwise limit of continuous funcitons.

Proof. 1Q is not continuous anywhere.
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10 Universal Spaces

10.1 Embeddings into generalized cubes

In this lecture, I = [0, 1].

Definition 10.1. A generalized cube is IA for some A 6= ∅, with the product topology.

Definition 10.2. Let X be a topological space. The family F ⊆ C(X, I) separates
points and closed sets if for all closed E ⊆ E and x ∈ Ec, there is some f ∈ F such
that f(x) /∈ f(E).

The existence of such functions in a T4 space is given by Tietze’s extension theorem.

Definition 10.3. If F ⊆ C(X, I) separates points and closed sets, then tere exists G ⊆
C(X, I) such that for all closed E ⊆ X and x ∈ Ec, there exists some g ∈ G such that
g(x) = 1 and g|E = 0.

Proof. For all x,E as above, choose f which separates them; that is, f(x) /∈ f(E). Then
x is contained in an interval disjoint from E, so there exists some piecewise linear bump
function ϕ such that ϕ(x) = 1 and ϕ = 0 outside of this interval. Then define fx,E,f = ϕ◦f .
Let G = {gx,E,f : x,E, f as above}.

Definition 10.4. X is completely regular if it is T1 and if for all closed E ⊆ X and
x ∈ Ec, there exists some f ∈ C(X, I) such that f(x) = 1 and f |E = 0.

This is sometimes called T3 1/2. So a T1 space is completely regular if and only if C(X, I)
separates points and closed sets.

Definition 10.5. For F ⊆ C(X, I), the map associated to F is e : X → IF : x 7→
(f(x))f∈F .

We want to study when this is a homeomorphism.

Proposition 10.1. Let X,F , e be as above.

1. e is continuous.

2. If F separates points, then e is injective.

3. If X is T1 and F separates points and closed sets, then e is a homeomorphism X →
e(X) ⊆ IF .

Proof. The first 2 mostly follow from the construction.

1. A canonical sub-base on IF is sets of the form π−1
f [U ] = {(xf )f∈FLxf ∈ U}, where

U ⊆ [0, 1] is open. Now e−1[π−1
f [U ]] = f−1[U ].
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2. Let x 6= y ∈ X. Then there exists f ∈ F such that (ex)f = f(x) 6= f(y) = (e(y))f .
So e(x) 6= e(y).

3. We must show that if U is open inX, then e(U) is relatively open in e(X). Pick x ∈ U .
We will find an open subset V of IF such that e(x) ∈ V ∩ e(X) ⊆ e(U); this implies
that e−1 is continuous for the relative topology. Apply the assumption to x and
E = U c. Then there exists f ∈ F separating them, so (e(x))f /∈ πf (e[E]) = F (E).

Define V = {(yg)g∈F : yg ∈ I \ πf (e[E])}. This is open in IF . Then e(x) ∈ V ∩ e(X)
by construction, and V ∩ e[E] = ∅. So V ∩ e[X] ⊆ e[U ].

Corollary 10.1. The following are equivalent:

1. X is completely regular.

2. X embeds into a cube.

3. X embeds into some compact Hausdorff space.

Proof. (1) =⇒ (2): Apply the proposition with F = C(X, I).
(2) =⇒ (3): Cubes are compact Hausdorff spaces.
(3) =⇒ (1): We just need that subsets of completely regular spaces are completely

regular. Do this as an exercise.

Corollary 10.2. Any compact Hausdorff space is homeomorphic to a closed subset of a
cube.

Proof. X embeds into e[X] ⊆ IA for some A. Since X is compact, e[X] is compact. IA is
Hausdorff, so e[X] is closed.

10.2 Compactification

In general, we can embed a completely regular space into a cube. Taking its closure, we
get a compact, Hausdorff space.

Definition 10.6. A compactification of X is a pair (Y, ϕ), where Y is compact Hausdorff
and ϕ is an embedding X → Y with ϕ[X] = Y .

Example 10.1. R→ S1 is an embedding. If we add in the extra point, we get a one-point
compactification.

Example 10.2. R → [−1, 1] is an embedding. If we add the endpoints, we can get a
two-point compactification.
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In general, the compactification X → e[X] ⊆ I(C(X,I) is called the Stone-Čech com-
pactification.

X e[X]

Y

e

ϕ

10.3 Embeddings of compact spaces

Now let (X, ρ) be a compact metric space.

Lemma 10.1. Compact metric spaces are separable.

Proof. For all n ∈ N, there exists a finite Sn ⊆ X such that
⋃
x∈Sn B1/n(x) = X. Now⋃

n Sn is countable and dense.

Corollary 10.3. C(X) is separable.

Proof. Let S ⊆ X be a countable dense subset. For y ∈ S, let fy(x) := ρ(y, x). Let
AR := {a0 +

∑m
i=1 aifyi · · · fyi,mi : ai ∈ R, yi,j ∈ S}. This is an algebra, it is nowhere

vanishing, and it separates points : if x 6= z in X, there exists (yn)n ∈ S such that yn → x.
So fyn(x) → 0, and fy−n(z) → ρ(x, z) 6= 0. So AR by the Stone-Weierstrass theorem,
which means that AQ = C(X).

Proposition 10.2. Compact metric spaces embed into [0, 1]N.

Proof. Let A be some countable dense subset of C(X, I). Then A separates points and
closed sets. So [0, 1]A ∼= [0, 1]N.

Remark 10.1. We can do this explicitly whenever X is separable. Let (xn)n be dense in
X. Let e(x) := (min{ρ(x, xn), 1})n ∈ [0, 1]N. This is the embedding.

Theorem 10.1 (Urysohn’s metrization theorem). Let X be 2nd countable. Then X is
metrizable if and only if it is normal. Equivalently, X embeds into [0, 1]N.

Proof. Here is the idea for showing that normality implies that X embeds into [0, 1]N.
Let E be a countable base. Define the countabl collection F which separates U c and V c

whenever U, V ∈ E and U c ∩ V c = ∅. Now apply the embedding construction.
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11 Introduction to Norms and Normed Vector Spaces

11.1 Normed vector spaces

First, here is our notation. We will denote K = R or C and X to be a vector space over
K. We will denote Kx = {λx : λ ∈ K} and 0 as the origin in K or X . If M,N are vect
spaces in X , then we denote M+N = {x+ y : x ∈M, y ∈ N}.

Definition 11.1. A seminorm on X is a function ‖ · ‖ : X → [0,∞) such that

1. ‖x+ y| ≤ ‖x‖+ ‖y‖ for all x, y ∈ X

2. ‖λx‖ = |λ|‖x‖ for all x ∈ X (homogeneous of order 1).

A norm is a seminorm such that ‖x‖ = 0 =⇒ x = 0. A pair (X , ‖ · ‖) is a normed
vector space.

The second property of seminorms implies that ‖0‖ = 0.

Definition 11.2. The norm metric on (X , ‖ · ‖) is ρ(x, y) = ‖x− y‖. This generates the
norm topology.

This is the kind of definition

Example 11.1. Rn or Cn with the Euclidean norm are normed vector spaces.

Example 11.2. The space BC(X,K) with ‖f‖u := supx∈X |f(x)|.

Example 11.3. The space `∞K = {(xn)∞n=1 ∈ KN : supn |xn| < ∞} is a normed vector
space with the norm ‖x‖∞ = supn |xn|. This is actually BC(N,K).

Example 11.4. Let (X,M, µ) be a measure space. Then L1
K(µ), the set of measurable

functions f : X → K such that ‖f‖1 =
∫
|f | dµ < ∞, is not a normed vector space. In

fact, ‖ · ‖1 is a seminorm, so to get a normed vector space, we need to look at equivalence
classes of functions that agree µ-a.e.

Example 11.5. The space `1K = {(xn)n ∈ KN : ‖x1‖ =
∑

n |xn| <∞} is a normed vector
space.

Example 11.6. `2K = {(xn)n ∈ KN : ‖x‖22 =
∑

n |xn|2 <∞} is a normed vector space. In
fact, if we replace 2 by p for 1 ≤ p <∞, we also get a normed vector space.
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11.2 Completeness and convergence

Definition 11.3. A Banach space over K is a normed vector space over K which is
complete in the norm metric.

All the above examples are Banach spaces.

Example 11.7. Here is an incomplete Banach space.8 Let Y = {x ∈ `1K : ∃n0 ∈
N s.t. xn = 0 ∀n ≥ n0}.
Definition 11.4. A series

∑∞
n=1 xn in (X , ‖ · ‖) is convergent if there exists some x ∈ X

such that ‖x−
∑N

n=1 xn‖ → 0 as N →∞. It is absolutely convergent if
∑∞

n=1 ‖xn‖ <∞.

Proposition 11.1. A normed space (X , ‖ · ‖) is complete if and only if every absolutely
convergent sequence is convergent.

Proof. ( =⇒ ): Assume X is complete. Let SN =
∑n

n=1 xn. Then for M > N ,

‖SN − Sm‖ =

∥∥∥∥∥
M∑

n=N+1

xn

∥∥∥∥∥ ≤
M∑

n=N+1

‖xn‖
N,M→∞−−−−−−→ 0.

Then SN is Cauchy, which means it has a limit.
(⇐= ): Suppose (xn)n is Cauchy. Then ‖xn− xm‖ → 0 as n,m→∞. Pick n1 < n2 <

· · · such taht ‖xn − xm‖ < 2i−1 for all n,m ≥ nj . Define y1 = xn1 and yj = xnj − xnj−1

for j ≥ 2. Note that
∑k

j=1 yj = xnk . Also,

k∑
j=1

‖yj‖ = ‖xn1‖+
k∑
j=2

‖xnj − xnj−1‖ ≤ ‖xn1‖+
∞∑
j=2

2−(j−1) <∞.

So there exists some x = limk→∞
∑k

j=1 yj = limk xnk . Then xn → x.

Remark 11.1. In this proof, we used a very useful technique: pass to a subsequence to
upgrade the convergence to a much faster convergence.

Proposition 11.2. L1
K(µ) is complete.

Proof. Assume (fj)j ∈ L1
R(µ) such that

∑
j

∫
|fj | dµ < ∞. Let gN =

∑N
j=1 |fj | be non-

negative and increasing in N . By the monotone convergence theorem, there exists some
g such that g = limN gN , g ≥ 0, and

∫
g = lim

∫
gN < ∞. Now if FN =

∑N
j=1 fj ,

then |FN | ≤ g. Moreover,
∑M

j=N |fj | ≤ g − gN → 0 whenever g < ∞ (which holds
a.e.). So F (x) := limN FN (x) exists for a.e. x.By the dominated convergence theorem, we
conclude that

∫
FN dµ →

∫
F dµ. Similarly, |FN − F | ≤ 2g be the triangle inequal-

ity, and |FN − F | → 0 pointwise. So by the dominated convergence theorem again,∫
|FN − F | →

∫
0 = 0.

The case K = C is similar.
8If you ever wonder whether a property is using the completeness of a Banach space, try seeing if it still

holds in this space.
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11.3 Norms over finite dimensional vector spaces

Definition 11.5. Two norms ‖ ·‖ and ‖ ·‖′ are equivalent if there exists some C ∈ (0,∞)
such that (1/C)‖x‖ ≤ ‖x‖′ ≤ C‖x‖ for all x ∈ X .

Theorem 11.1. If dim(X ) <∞, all norms are equivalent.

Proof. We will treat the K = R case; the K = C case is similar. It is enough to show this
when X = Rn. Let | · | be the Euclidean norm and ‖ · ‖ be another norm. We will show
that | · ‖ and ‖ · ‖ are equivalent.

Let e1, . . . , en be the standard basis. Then

‖x‖ =

∥∥∥∥∥
n∑
i=1

xiei

∥∥∥∥∥ ≤
n∑
i=1

|xi|‖ei‖ ≤

(∑
i

|xi|2
)1/2(∑

i

‖ei‖2
)1/2

by Cauchy-Schwarz. In fact, this shows that ‖ · ‖ is continuous.
To finish, it is enough to show that inf{‖x‖ : |x| = 1} > 0. But this infimum is achieved

at some x such that |x| = 1. We must still have ‖x‖ > 0 at this x.

The proof also showed us the following.

Corollary 11.1. ‖ · ‖ is continuous for the usual topology on Rn.
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12 Banach Space Constructions

12.1 Product spaces

Definition 12.1. Let (X , ‖ · ‖X ) and (Y, ‖ · ‖Y) be normed vector spaces over K. The
Cartesian product X × Y is a normed space with one of many possible norms:

1. ‖(x, y)‖ := max(|x‖X , ‖y‖Y)

2. ‖(x, y)‖ := |x‖X + ‖y‖Y

3. ‖(x, y)‖ :=
√
‖x‖2X + ‖y‖2Y .

Remark 12.1. There are many natural options for what norm to use; not all of them are
listed here. However, from a category theory perspective, none of these are “natural.”

Proposition 12.1. With any of these norms, X ×Y is complete if and only if both X and
Y are complete.

12.2 Quotient spaces

Definition 12.2. Let (X , ‖ · ‖) be a normed space over K, and let M ⊆ X be a vector
subspace. The quotient space is X/M = {x +M : x ∈ X} with the quotient norm
‖x+M‖ := inf{‖y‖ : y ∈ x+M}.

Lemma 12.1. If X is complete and M⊆ X is a closed subspace, then X/M is complete.

Proof. Suppose (xn +M)∞n=1 ∈ X/ cM is a sequence such that
∑∞

n=1 ‖xn +M‖. For each
n, pick yn ∈ xn +M such that ‖yn‖ < ‖xn +M‖+ 2−n. Then

∑∞
n=1 ‖yn‖ <∞, so there

exists some y =
∑∞

n=1 yn ∈ X . So ‖y −
∑N

n=1 ‖ → 0 as N → ∞. This is an element of

(y +M)−
∑N

n=1(yn +M) = (y +M)−
∑N

n=1(xn +M). So∥∥∥∥∥(y +M)−
N∑
n=1

(xn +M)

∥∥∥∥∥ ≤
∥∥∥∥∥y −

N∑
n=1

∥∥∥∥∥→ 0.

12.3 Bounded linear maps

Definition 12.3. A linear map T : X → Y is called bounded if there exists some C <∞
such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X . The vector space of bounded linear maps is
called L(X ,Y).

Proposition 12.2. Let T : X → Y be linear. The following are equivalent:

1. T is continuous.
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2. T is continuous at 0.

3. T is bounded.

Proof. (1) =⇒ (2): This is a special case.
(3) =⇒ (1): For all x, x′ ∈ X , we have

‖Tx− Tx′‖Y = ‖T (x− x′)‖Y ≤ C‖x− x′‖X .

(2) =⇒ (3): For every ε > 0, there exists a δ > 0 such that

‖x‖X < δ =⇒ ‖Tx‖Y < ε.

So for all x ∈ X \ {0}, let x′ = δ
2‖x‖X . Then ‖x′‖X < δ. Then

‖Tx′‖Y =
δ

2‖x‖X
‖Tx‖Y < ε =⇒ ‖Tx‖Y <

(
2ε

δ

)
‖x‖X .

Lemma 12.2. If S, T ∈ L(X ,Y), say with constants CS , CT , then S + T ∈ L(X ,Y) with
constant at most CS + CT , and λSL(X ,Y) with constant ≤ |λ|CS
Proof.

‖(S + T )x‖ ≤ ‖Sx‖+ ‖Tx‖ ≤ (CS + CT )‖x‖.

Definition 12.4. L(X ,Y) is a normed space with the operator norm

‖T‖op = inf{C : ‖Tx‖ ≤ C‖x‖ ∀x ∈ X}.

Remark 12.2. Equivalently, we can define the operator norm as

‖T‖op = sup{C : ‖Tx‖Y : x ∈ X , ‖x‖X = 1}.

= sup

{
C :
‖Tx‖Y
‖x‖X

: x ∈ X \ {0}
}
.

Proposition 12.3. If Y is complete, so is L(X ,Y).

Proof. Let (Tn)n be Cauchy in L(X ,Y). Then for all x ∈ X , we have

‖Tnx− Tmx‖Y ≤ ‖Tn − Tm‖op‖x‖X
n,m→∞−−−−−→ 0,

so there exists a limn Tnx =: Tx. Now show that T ∈ L(X ,Y) ,and ‖Tn − T‖op → 0.

Remark 12.3. If S ∈ L(X ,Y) and T ∈ L(Y,Z), then for all x ∈ X ,

‖TSx‖Z = ‖T‖‖Sx‖Y ≤ ‖T‖‖S‖‖x‖X ,

so T ◦ S ∈ L(X ,Z), and ‖T ◦ S‖ ≤ ‖S‖‖T‖. So L(X ,X ) is an algebra over K, and it is a
Banach algebra if X is complete.

Definition 12.5. A linear operator T ∈ L(X ,Y) is invertible (or an isomorphism) if
T−1 exists an and is an element of L(Y,X ).
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12.4 Dual spaces and the Hahn-Banach theorem

Definition 12.6. The space X ∗ := L(X ,K) is the dual space. Its norm is called the
dual norm, and its elements are bounded linear functionals.

Theorem 12.1 (Hahn-Banach). Let (X , ‖·‖) be a normed space, letM be a linear subspace,
and let f ∈M∗. Then there exists F ∈ X ∗ such that F |M = f and ‖F‖X ∗ = ‖f‖M∗.

We will prove this theorem next time. Instead, let’s look at a consequence.

Theorem 12.2. If M ⊆ X is a closed linear subspace and x ∈ X \M, then there exists
f ∈ X ∗ such that f |M = 0 but f(x) 6= 0. Moreover, we can take ‖f‖ = 1 and f(x) =
infy∈M ‖x− y‖.

Proof. Let N =M+Kx. Let δ = infy∈M ‖x− y‖ = δ. Define the function g : N → K as
g(y + λx) := 0 + λδ. To show that g is well-defined and linear, note that

g((y + λx) + (y′ + λ′x)) = g((y + y′) + (λ+ λ′)x) = (λ+ λ′)δ.

For find the norm of g, we want |g(y + λx)| ≤ ‖y + x‖ for all y, λ. Scaling by a constant,
we can assume λ = 1. Then we want δ = |g(y + x)| ≤ ‖y + x‖ for all y ∈ M, which
is true by definition. By the Hahn-Banach theorem, g has an extension f ∈ X ∗ with
‖f‖ = ‖g‖ = 1.
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13 The Hahn-Banach theorem and Dual spaces

13.1 Reflexive spaces and dual spaces

Last time, we showed a consequence of the Hahn-Banach theorem. Here is a special case,
where we separate x ∈ X from the closed subspace M = {0}.

Proposition 13.1. Let x ∈ X \ {0}. Then there exists some f ∈ X ∗ such that ‖f‖ = 1
,and |f(x)| = ‖x‖. Moreover, X ∗ separates points of X .

Proposition 13.2. If x ∈ X , define x̂ : X ∗ :→ K by x̂(f) := f(x). Then x 7→ x̂ is a linear
isometry X → X ∗∗.

This is called the canonical embedding.

Proof. For linearity,

x̂+ y(f) = f(x+ y) = f(x) + f(y) = x̂(f) + ŷ(f).

Multiplication by constants is the same. To show that it is an isometry,

‖x̂‖∗∗ = sup{x̂(f) : ‖f‖∗ ≤ 1}
= sup{f(x) : ‖f‖∗ ≤ 1}
≤ ‖x‖.

We can achieve equality by the above corollary of Hahn-Banach.

Remark 13.1. Recall that if Y is complete, then L(X ,Y) is complete. Then, since X ∗∗ =
L(X ∗,K), and K = R or C is complete, X ∗∗ is complete. So X̂ = {x̂ : x ∈ X} is a canonical
way of completing X .

Definition 13.1. X is reflexive if X̂ = X ∗∗.

Finite dimensional vector spaces are always reflexive. This is not always the case for
infinite dimensional spaces.

Example 13.1. C[0, 1] is not reflexive. We will see this later, but its dual is not separable,
and neither is its double dual.

Definition 13.2. The adjoint (or transpose) of T : X → Y is T ∗ : Y∗ → X ∗ defined by
T ∗(f) = f ◦ T .

T ∗ is linear, and it satisfies ‖T ∗‖ ≤ ‖T‖.

Proposition 13.3. Let T : X → Y be bounded and linear.

1. ‖T ∗‖ = ‖T‖.
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2. Let T ∗∗ : X ∗∗ → Y∗∗ be T ∗∗ = (T ∗)∗. Then T ∗∗|X̂ = T .

3. T ∗ is injective if and only if T [X ] is dense in Y.

4. If T ∗[Y∗] is dense in X ∗, then T is injective.

Proof. The verification of these either follows quickly from the definitions or is an applica-
tion of Hahn-Banach.

13.2 The Hahn-Banach theorem

For now, X will be a real vector space.

Definition 13.3. A sublinear functional is a function p : X → R such that

1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X

2. p(λx) = λp(x) for all λ ≥ 0 and x ∈ X .

Example 13.2. Any seminorm is a sublinear functional.

Theorem 13.1 (Hahn-Banach, general form). Let X be a real normed space, let p be a
sublinear functional, let M⊆ X be a subspace, and let f :M→ R be linear and such that
f(x) ≤ p(x) for all x ∈ M. Then there exists a linear functional F : X → R such taht
F |M = f and F ≤ p.

Proof. Step 1: Suppose X =M+Rx, where x /∈M. Then any element of X is m+λx for
some unique m ∈M and λ ∈ R. We want to find α ∈ R such that if we set F (m+ λx) :=
f(m)+λα, then F ≤ p; i.e. f(m)+λα ≤ p(m+λx) for all m ∈M and λ ∈ R. Equivalently,
we want λα ≤ p(m+ λx)− f(m). We have two cases:

1. If λ > 0, then this is equivalent to α ≤ p(m+ λx)/λ− f(m)/λ for all m ∈M . That
is, α ≤ p(m/λ + x) − f(m/λ). This is equivalent to α ≤ p(m + x) − f(m) for all
m ∈M .

2. If λ < 0, divide by −λ and rearrange similarly. We want −α ≤ p(m− x)− f(m) for
all m ∈M. This is α ≥ f(m′)− p(m′ − x) for all m′ ∈M.

So it remains to show that f(m′) − p(m′ − x) ≤ p(m + x) − f(m) for all m,m′ ∈ M; if
we have this, then we can pick any α between these upper and lower bounds. We can
rearrange to get f(m) + f(m′) ≤ p(m′ − x) + p(m+ x) for all m,m′ ∈M. But this is

f(m) + f(m′) = f(m+m′)

≤ p(m+m′)

= p((m+ x) + (m′ − x))
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≤ p(m′ − x) + p(m+ x),

so we can have the desired α.
Step 2: Here is the general case. Let E be the collection of pairs (N , g) such that N

is a subspace of X containing M,and g : N → R is a linear functional such that g|M = f
and g ≤ p. Define the partial order (N, g) ≤ (N ′, g′) if N ⊆ N ′, and g′|N = g. We will
use Zorn’s lemma. We wnt to show that every chain ((Nα, gα))α has an upper bound. Let
N =

⋃
αNα, and let g(x) = gα(x) for all x ∈ Nα. Then g ≤ p, and g|M = gα|M = f . We

must show that N and g are linear. If x, y ∈ N , then x ∈ Nα and y ∈ Nβ, so x, y ∈ Nα,
where Nα ⊇ Nβ. So x+ y ∈ Nα < N . So by Zorn’s lemma there exists a maximal element
(N , g) ∈ E . We must have N = X otherwise step 1 contradicts the maximality of N .
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14 Applications of the Baire Category Theorem in Banach
Spaces

14.1 The complex Hahn-Banach theorem

Here is a loose end from last time.

Theorem 14.1 (Hahn-Banach, complex version). Let (X , ‖ · ‖) be a normed vector space
over C, let M⊆ X be a subspace, and let f ∈M∗. Then there exists an F ∈ X ∗ such that
F |M = f and |F | = f .

Proof. Define u = Re(f). Observe that f(ix) = if(x) = − Im(f(x)) + iRe(f(x)). So
Im(f) = −Re(f(i·)) = −u(i·). By the real Hahn-Banach theorem, u extends to U , and let
F (x) = U(x)− iU(ix). Check that |F | = |f |.

14.2 The open mapping theorem

In finite dimensional vector spaces, linear bijections have linear inverses. Does this still
work for normed spaces and bounded linear functions? The answer is no, unless we are
dealing with Banach spaces.

Definition 14.1. A function f : X → Y is called open for all open U ⊆ X, f [U ] is open
in Y .

Lemma 14.1. Let T : X → Y be a linear map between normed spaces. Then T is open if
and only if T [BX (0, 1)] ⊇ By(0, r) for some r > 0.

Proof. ( =⇒ ): This follows from the definition.
( ⇐= ): Assume the condition holds. Let U ⊆ X be open, and let x ∈ U . Since U is

open, there exists some s > 0 such that BX (x, s) ⊆ U . Then

T [U ] ⊇ T [BX (x, s)]

= {T (x+ su) : u ∈ BX (0, 1)}
= Tx+ sT [BX (0, 1)]

⊇ Tx+ sBY(0, r)

= By(Tx, sr).

Theorem 14.2 (Open mapping theorem). Let X ,Y be Banach spaces, and let T : X → Y
be surjective. Then T is open.
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Proof. Step 1: Write X =
⋃
n nBX (0, 1). So Y = T [X ] =

⋃
n nT [BX (0, 1)]. By the Baire

category theorem, there is some n ∈ N such that nT [BX (0, 1)] contains some open ball
BY(y, r). Then T [BX (0, 1)] ⊇ By(y/n, rn). Pick x1 such that ‖Tx1 − y/n‖ < r/(4n).

Then T [−x1 +BX (0, 1)] = −Tx1 +T [BX (0, 1)] ⊇ BY(y/n−Tx1, r/n) ⊇ BY(0, r/(2n)). So
we get T [BX (0, 1 + ‖x1‖)] ⊇ BY(0, r/(2n)). This gives us that T [BX (0, 1)] ⊇ By(0, s) for
some s > 0. By dilating by a constant (which is a homeomorphism from a Banach space
to itself), we get T [BX (0, r)] ⊇ By(0, s) for all r > 0.

Step 2: Pick y ∈ By(0, s), and pick x1 ∈ BX (0, 1) such that ‖y − Tx1‖Y < s/2.
Call y1 = y − Tx1. Now pick x2 ∈ BX (0, 1/2) such that ‖y1 − Tx2‖Y < s/4, calling
y2 = y1 − Tx2 . Continuing like this, we get a sequence xn ∈ BX (0, 1/2n−1) such that if
yn = yn−1 − Txn, then ‖yn‖ < s/2n. In the end, x :=

∑
n xn ∈ X as ‖x‖ ≤

∑
n ‖xn‖ < 2,

and Tx =
∑

n Txn = y. So T [BX (0, 2)] ⊇ BY(0, s/2).

Corollary 14.1. If T ∈ L(X ,Y) is a bijection between Banach spaces, then T−1 ∈
L(Y,X ).

Proof. T is open iff T−1 is continuous.

Corollary 14.2. If ‖·‖1 ≤ ‖·‖2 are 2 norms on X that are both complete, then ‖·‖1 ≥ C‖·‖2
for some C.

Proof. Apply the previous corollary to id : (X , ‖ · ‖2)→ (X , ‖ · ‖1).

14.3 The closed graph theorem

Definition 14.2. The graph of T : X → Y is Γ(T ) = {(x, Tx) : x ∈ X} ⊆ X × Y.

If T is linear, then Γ(T ) is a subspace of X × Y.

Theorem 14.3. If T : X → Y linear between Banach spaces and Γ(T ) is a closed subspace
of X × Y , then T is continuous.

Remark 14.1. In general, if T is continuous, its graph is closed. If Γ(T ) is closed, T is
called a closed operator.

Proof. Factorize T into S(x) = (x, Tx) and R(y, z) = z.

Γ(T )

X Y

RS

T

Γ(T ) is closed, so it is a Banach space. R is continuous, so it suffices to show that S is
continuous. But S is a bijection, and S−1 : (y, z)→ y is continuous, so the open mapping
theorem implies that S is continuous.
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Why do we care? Continuous means that if xn → x, then Txn → Tx. To show
that something has a closed graph, we only need to show that if (xn, Txn) → (x, y), then
y = Tx. So we don’t need to show that such an x exists; we only need to show that if it
does, then xn converges to the right thing.

14.4 The uniform boundedness principle

Theorem 14.4 (uniform boundedness principle). Let X ,Y be normed spaces, X be Ba-
nach, and let A ⊆ L(X ,Y). If supT∈A ‖Tx‖ <∞ for all x]inX , then supT∈A ‖T‖ <∞.

Proof. Let En = {x ∈ X : supT∈A ‖Tx‖ ≤ n} =
⋂
T∈A{x : ‖Tx‖ ≤ n}. Then En is

closed, and X =
⋃
nEn, so by Biare category, En/r ⊇ BX (x, 1) for some n, x, r. Then

BX (x, 1) − BX (x, 1) ⊆ E2n/r. But the left hand side contains BX (0, 2). So ‖x‖ < 2 =⇒
‖Tx‖ ≤ 2n/r for all T ∈ A. This is independent of x, so ‖T‖ ≤ n/r for all T ∈ A
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15 Locally Convex Topological Vector Spaces

15.1 A note on the uniform boundedness principle

Here is another perspective on the uniform boundedness principle.

Theorem 15.1 (uniform boundedness principle, weaker version). Suppose that (X, ρ) is
a complete metric space, (Y, ‖ · ‖) is a normed space, and F ⊆ C(X,Y) is such that for
all x ∈ X, supf∈F ‖f(x)‖ < ∞. Then there exists a nonempty, open U ⊆ X such that
sup{‖f(x)‖ : x ∈ U, f ∈ F} <∞.

Proof. Let

En = {x ∈ X : ‖f(x)‖ ≤ n ∀f ∈ F}

=
⋂
f∈F
{‖f(·)‖ ≤ n}.

Then each En is closed, and X =
⋃
nEn, so by the Baire category theorem. There exists

an n such that Eon 6= ∅.

If X is Banach and F ⊆ L(X ,Y), then we actually get supT∈F ‖T‖op <∞.

15.2 Topological vector spaces and convexity

Proposition 15.1. Let (X , ‖ · ‖) be a normed space. Then

1. The addition map X × X → X sending (x, y) 7→ x+ y is continuous.

2. The scalar multiplication map K ×X → X given by (λ, x) 7→ λx is continuous.

Proof. Use the fact that these maps are continuous over the scalar field.

Definition 15.1. A topological vector space is a pair (X , T ) such that X is a vector
space over K = R or C, T is a topology on X , and addition and scalar multiplication are
continuous.

Definition 15.2. Let X be a vector space over K. A subset A ⊆ X is convex if x, y ∈
A =⇒ tx+ (1− t)y ∈ A for all t ∈ [0, 1].

Definition 15.3. A topological vector space is locally convex if the origin in X has a
neighborhood base consisting of convex open sets.
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15.3 Topologies induced by seminorms

Theorem 15.2. Let (pα)α be a family of seminorms on X . If x ∈ X , α ∈ A, and ∅ > 0,
define Ux,α,ε = {y : pα(x− y) < ε}. Let T be the topology generated by the Ux,α,ε.

1. For x ∈ X , the set {
⋂n
i=1 Ux,αi,ε : αi ∈ A, ε > 0} is a neighborhood base at x.

2. If (xn) is a sequence in X , then xn → x in T iff pα(xn − x)→ 0 for all α.

3. (X , T ) is a locally convex topological vector space.

Proof. Here are the idea.

1. Suppose x ∈
⋂n
i=1 Uxi,αi,δ. Then pαi(x−xi) < δi for each i. Pick εi < δi−pαi(x−xi).

Now x ∈ Uxi,αi,δ ⊆ Uxi,αi,δi . Let ε = min(ε1, . . . , εn).

2. Try it yourself!

3. We must show that addition and multiplication are continuous. Pick
⋂n
i=1 Ux+y,αi,ε 3

x+ y. Let x′ ∈
⋂
i Ux,α,ε/2 and same for y. Multiplication is the same.

To get local convexity, if y, z ∈ Ux,α,ε and t ∈ [0, 1], then pα(x − ty − (1 − tz) ≤
pα(tz − ty) = pα((1 − t)x − (1 − tz)) = tpα(x − y) + (1 − t)pα(x − z) < ε. Any
intersection of convex sets is convex.

Example 15.1. Let RN have the product topology. Let pi(x) = |xi| for each i. These gen-
erate the product topology. Alternatively, we could define p̃m(x) = maxi≤m |xi|. Actually,
we could also take ru(x) = |x1|+ · · ·+ |xi|. This is a locally convex vector space. However,
there is no norm that gives the product topology on RN.

Example 15.2. There is a locally convex topology on C(Rn) that captures the notion of
locally uniform convergence. Define the seminorms pm(f) = ‖f |

Bm(0)
‖u for each m ∈ N+.

Now fn → f in T iff fn → f locally uniformly.

Example 15.3. Look at L1
loc(Rn), Define the seminorms Pm(f) =

∫
[−m,m]n |f | dx. Then

fn → f in this topology iff fn1B → f1B in L1 for all bounded, measurable B subseteqRn.

Here is a non-example.

Example 15.4. Let (X,M, µ) be a measure space, and define L0(µ) to be the set of
equivalence classes of measurable functions X → R that agree µ-a.e. Let T be the topology
generated by all sets of the form V (f, ε) := {g ∈ L0(µ) : µ({|f − g| > ε}) < ε}, where
f ∈ L0(µ) and ε > 0. Then fn → f iff fn → f in measure, but T is not locally convex.

In normed spaces, we saw that continuity was equivalent to boundedness. How does
this play out in locally convex spaces?
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15.4 Continuity in locally convex spaces

Proposition 15.2. Let X ,Y be locally convex spaces generated by (pα)α and (qβ)β, respec-
tively. Let T : X → Y be linear. The following are equivalent:

1. T is continuous.

2. For all β ∈ B, there exist {α1, . . . , αn} ⊆ A and C > 0 such that qβ(Tx) ≤
C
∑n

i=1 pαi(x).

Proof. (1) =⇒ (2): Pick β ∈ B. If T is continuous, then {x : qβ(Tx) < 1} is open
in X and contains 0. So there exist α1, . . . , αn ∈ A and ε > 0 such that

⋂n
i=1 U0,αi,ε ⊆

{qβ ◦ T < 1}. In particular, if x ∈ X and
∑n

i=1 pαi(x) < ε, then x ∈ U , so qβ(Tx) < 1.
That is, if (1/ε)

∑n
i=1 pαi(x) < 1, then qβ(Tx) < 1. By homogeneity of order 1, we get

qB ◦ T ≤ (1/ε)
∑n

i=1 pαi .

Example 15.5. Take RN with the 3 families of seminorms pi(x) = |xi|, qi(x) = maxj≤i |xj |,
and ri(x) = |x1 + · · · + |xi|. If we had that RN had a topology given by a norm, then
‖x‖ ≤ C

∑n
i=1 |xi| for some C and n. But then, if we pick x to be nonzero but 0 in the

first n coordinates, it has to have norm 0. This is impossible.
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16 Fréchet Spaces, Weak Topologies, and The Weak∗ Topol-
ogy

16.1 Fréchet spaces

Proposition 16.1. Let (X , (pα)α, T ) be a locally convex topological vector space generated
by the seminorms pα.

1. T is Hausdorff iff for all x ∈ X \ {0}, there exists some α such that pα(x) 6= 0.

2. If T is Hausdorff and A is countable, then (X , T ) is metrizable with a translation
invariant metric: ρ(x+ z, y + z) = ρ(x, y) for all z.

Proof. Proving the first statement is easiest done with the left implication and the contra-
positive of the right implication.

1. (⇐= ): Let x, y ∈ X such that x 6= y. Then there exists α such that pα(y − x) > 0.
Consider Ux,α,ε, Uy,α,ε for ε < pα(y − x)/2.

( =⇒ ): Otherwise, there exists x 6= 0 such that pα(x) = 0 for all α. Then x ∈ U0,α,ε

for all α, ε. So x lies in any neighborhood of 0.

2. Given (pn)n∈N, define

ρ(x, y) = max{2−n min{ρ(x− y), 1} : n ∈ N}.

The min inside satisfies the triangle inequality, and taking maxes preserves the trian-
gle inequality. So this is a pseudometric. Since ρ is a function of x−y, it is translation
invariant. Lastly, if x 6= y, then px(x− y) 6= 0 for some n, so ρ(x, y) > 0.

Definition 16.1. A Fréchet space a locally convex topological vector space with the
above metric such that ρ can be chosen to be complete.

Example 16.1. RN with the product topology, C(Rn) with the topology of local uniform
convergence, and L1

loc are all Fréchet spaces.

16.2 Weak topologies

Definition 16.2. Let Tα : X → (Yα, ‖·‖α) be a collection of linear maps with the resulting
family of seminorms pα(x) = ‖Tαx‖α. These generate the weak topology generated by
(Tα)α.

Example 16.2. Let Tm : C(Rn)→ C([m,m]d) send f 7→ f |[−m,m]d . Then the topology of
local uniform convergence is the weak topology generated by these maps.

Example 16.3. On C∞([0, 1]), for each k, consider (d/dx)k : C∞([0, 1])→ C([0, 1]). Now
take the weak topology generated by these.
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Usually in the setting of normed spaces, we refer to a very specific weak topology.

Definition 16.3. The weak topology on (X , ‖ · ‖) is the topology generated by X ∗, the
set of continuous linear functionals.

Remark 16.1. In general, Tweak ⊆ Tnorm. These are equal iff dim(X ) < ∞. If f ∈ X ∗,
show that Ux,f,ε = {y : |f(y − x)| < ε} is contained in a ball around x.

Remark 16.2. Convergence in the weak topology means the following:

xn → x ⇐⇒ f(xn)→ f(x) ∀f ∈ X ∗.

In norm topologies, we have |f(xn)−f(x)| ≤ ‖f‖‖xn−x‖. So the weak topology is weaker
particularly because it does not give this uniformity of convergence.

16.3 The weak∗ topology

If (X ∗, ‖ · ‖) is a Banach space, then we have the dual space (X ∗, ‖ · ‖∗), This has its own
dual (X ∗∗, ‖ · ‖∗∗). We have 2 choices for the weak topology on X ∗: we can take the usual
weak topology, or we can restrict to the even weaker topology generated by X embedded
into X ∗∗.
Definition 16.4. The weak∗ topology on X ∗ is generated by the family of maps x̂ : f 7→
f(x) ∈ K where x ∈ X and f ∈ X ∗.
Theorem 16.1 (Alaoglu). B∗ = {f ∈ X ∗ : ‖f‖∗ ≤ 1} is compact for the weak∗ topology.

Proof. Say K = C.

B∗ = {f : X → C | f(x+ λy) = f(x) + λf(y), |f(x)| ≤ ‖x‖}
= {f : X → C : f is linear, f(x) ∈ BC(0, ‖x‖) ∀x}.

That is, f ∈
∏
x∈X BC(0, ‖x‖).

= {f ∈
∏
x∈X

BC(0, ‖x‖) : f(x+ y)− g(x) = λf(y) = 0 ∀x, y, λ}

=
⋂
x,y,λ

{f ∈
∏
x∈X

BC(0, ‖x‖) : f(x+ y)− g(x) = λf(y) = 0}.

By Tychonoff’s theorem, we need only show that Tweak* |B∗ = Tprod|B∗ . These are weak
topologies generated by the same family of maps.

Proposition 16.2. Let (X , ‖ · ‖) be separable. Then Tweak* |B∗ is metrizable.

Proof. Let (xn)n be a dense sequence in X . Then define ρ on B∗ by

ρ(f, g) = max{2−n/‖xn‖|f(xn)− g(xn)| : n ∈ N}.

This generates Tweak* |B∗ . For all x ∈ X , there exists xni → x, and therefore x̂ni |B∗ → x̂|B∗
uniformly.
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17 Weak∗ Metrizability, Operator Topologies, and Complex
Measures

Many thanks to Anthony Graves-Mccleary, who provided me with notes when I missed
this lecture.

17.1 Metrizability of the closed unit ball in the weak∗ topology

Let’s be a bit more thorough with a point we went over last time.

Proposition 17.1. Let (X , ‖ · ‖) be separable. Then Tweak* |B∗ is metrizable.

Proof. Let (xn)n be a dense sequence in X . In Tweak* |B∗ , a neighborhood base of f ∈ B∗
is sets of the form

m⋂
i=1

{g ∈ B∗ : |g(x(i))− f(x(i))| < ε}

for some x(1), . . . , x(m) ∈ X and ε > 0. Consider T ′ generated by such neighborhoods
except only using x(i) from {x1, x2, . . . }. Then T ′ ⊆ Tweak* |B∗ .

Step 1: T is metrizable: Let

ρ(f, g) = max
n≥1

(2−n min(|f(xn)− g(xn)|, 1)).

This is analogous to the construction of a metric on a weak topology.
Step 2: We know that Tweak* |B∗ is the weakest topology on B∗ that makes x̂ = (f 7→

f(x)) continuous for each x ∈ X . To finish, show that T ′ has this property; i.e. x̂ is T ′-
continuous. Suppose x ∈ X . There exists a sequence (xni) in the countable dense set such
that xni → x in norm. As a result, if f ∈ B∗, then

|x̂(f)− x̂ni(f)| = |f(x)− f(xni)| ≤ ‖f‖ · ‖x− xni‖ ≤ ‖x− xni‖,

which goes to 0 independently of f . So x̂ni → x̂ uniformly on B∗. Thus, x̂ is a uniform
limit of T ′-continuous functions, so x̂ is T ′-continuous.

Remark 17.1. The weak∗ topology is almost never metrizable for all of X ∗.

17.2 The strong and weak operator topologies

Let X ,Y be Banach spaces.

Definition 17.1. The strong operator topology on L(X ,Y) is the topology generated
by the linear operators T 7→ Tx for x ∈ X ; i.e. this is the weak generated by the seminorms
T 7→ ‖Tx‖.
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Tn → T in the strong operator topology if and only if Tnx→ Tx in norm for all x ∈ X .

Definition 17.2. The weak operator topology on L(X ,Y) is the topology generated
by the linear operators T 7→ ϕ(Tx) for x ∈ X and ϕ ∈ Y∗; i.e. this is the weak topology
generated by the seminorms T 7→ ‖ϕ(Tx)‖.

Tn → T in the weak operator topology if and only if Tnx → Tx weakly in Y for all
x ∈ X .

17.3 Signed measures, complex measures and the Lebesgue-Radon-Nikodym
theorem

Recall the concept of signed measures. A signed measure ν cannot hit both +∞,−∞, and
signed measures are related to two decompositions:

1. Hahn decomposition: X = P ∪ N , where ν(A) ≥ 0 for all measurable A ⊆ P , and
ν(B) ≤ 0 for all measurable B ⊆ N .

2. Jordan decomposition: ν = ν+ − ν−, where ν+ and ν− are positive measures.

We write |ν| = ν++ν−, and integration with respect to ν is
∫
f dν =

∫
fdmu+−

∫
f dν−

for f ∈ L1(|ν|).

Theorem 17.1 (Lebesgue-Radon-Nikodym). Let µ, ν be σ-finite positive and signed mea-
sures, respectively. Then there exists a unique decomposition ν = λ + ρ such that λ ⊥ µ
and ρ� µ. The Radon-Nikodym derivative, the function f such that dρ = f dµ, is unique
µ-a.e.

Definition 17.3. A complex measure on (X,M) is a function ν :M→ C such that

1. ν(∅) = 0,

2. For (En) disjoint in M, ν(
⋃∞
n=1En) =

∑∞
n=1 ν(En), where the sum converges abso-

lutely.

Here, we can write ν = Re(ν) + i Im(ν) = νr + iνi, where νr, νi must be finite signed
measures.

Definition 17.4. Integration with respect to a complex measure ν is given by∫
f dν =

∫
f dνr + i

∫
f dνi

for f ∈ L1(|νr|+ |νi|).

Theorem 17.2 (Lebesgue-Radon-Nikodym for complex measures). Let µ, ν be σ-finite
positive and signed measures, respectively. Then there exists a unique decomposition ν =
λ+ ρ such that λ ⊥ µ (i.e. λ±r , λ

±
i all ⊥ µ), ρ � µ (i.e. ρ±r , ρ

±
i all � µ), and the Radon-

Nikodym derivative, dρ = f dµ for some f ∈ L1
C(µ).
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17.4 Total variation of complex measures

If ν is a complex measure, then ν � |νr| + |νi|. Now suppose ν � µ, where µ is σ-finite
and positive. By Radon-Nikodym, dν = f dµ for some f ∈ L1

C(µ). We want to define
d|ν| = |f | dµ.

Lemma 17.1. If f1 dµ1 = f2 dµ2, then |f1| dµ1 = |f2| dµ2 (so d|ν| is well defined).

Proof. For i = 1, 2, µi � µ = µ1+µ2, so dµi = gidµ, where gi ≥ 0. Then f1g1 dµ = f2g2 dµ.
So f1g2 = f2g2 µ-a.e., which gives |f1|g1 = |f1g1| = |f2g2| = |f2|g2 µ-a.e. So

|f1| dµ1 = |f1|g1 dµ = |f2|g2 dµ = |f2| dµ2.

Proposition 17.2. Let ν be a complex measure. The total variation, |ν| has the following
properties:

1. |ν(E)| ≤ |ν|(E) for all E ∈M.

2. ν � |ν|, and | dνd|ν| | = 1 |ν|-a.e.

3. L1(ν) = L1(|ν|), and if f ∈ L1
C(ν), then |

∫
f dν| ≤

∫
|f | d|ν|.

Proposition 17.3. If ν1, ν2 are complex measures, then |ν1 + ν2| ≤ |ν1|+ |ν2|.
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18 The Riesz Representation Theorem

18.1 Triangle inequality for complex measures

Lemma 18.1. Let (X,M) be measurable with complex measures ν1, ν2. Then |ν1 + ν2| ≤
|ν1|+ |ν2|.

Proof. Given ν, find a positive measure µ � ν. Then we get d ν = f dµ. Now d|ν| =
|f | dµ. Similarly, let dνi = fi dµ for µ = |ν1| + |ν2|. Then d(ν1 + ν2) = (f1 + f2) dµ, so
d|ν1 + ν2| = |f1 + f2| dµ ≤ |f1| dµ+ |f2| dµ.

18.2 Positive linear functionals and the Riesz-Markov theorem

Let (X, ρ) be a compact metric space. The goal is to describe the dual of C(X,R) or
C(X,C) = C(X) with the uniform norm. Recall the Riesz-Markov theorem:

Definition 18.1. A linear functional ` : C(X,R) → R is positive if `(f) ≥ 0 whenever
f ≥ 0.

So if f ≥ g then `(f) = `(g) + `(f − g) ≥ `(g).

Theorem 18.1 (Riesz-Markov). For any positive linear functional ` : C(X,R)→ R, there
exists a unique finite positive Borel measure µ on X such that `(f) =

∫
f dµ.

Remark 18.1. If ` is a positive linear functional on C(X,R) and f ∈ C(X,R), then
−‖f‖u ≤ f ≤ ‖f‖u. Then −‖f‖ucx ≤ f ≤ ‖f‖ucx, where cx is the constant x function. So
−‖f‖u`(cx) ≤ `(f) ≤ ‖f‖u`(cx), which gives |`(f)| ≤ ‖f‖u`(cx) with equality if f = cx. So
‖`‖C(X,R)∗ = `(cx) = µ(X).

18.3 The Riesz representation theorem

Let M(M,K) be the space of all finite signed or complex measures on (X,BX), where
K = R or C. This is a vector space over K.

Lemma 18.2. M(X,K) is a normed space over K with norm ‖µ‖ = |µ|(X).

Proof. If λ ∈ K and µ ∈ M(X,K), then dµ = f d|µ|. So d(λµ) = (λf) d|µ|, and we get
d|λµ| = |λf |d|µ| = |λ| d|µ|. So ‖λµ‖ = |λ|‖µ‖.

If ν1, ν2 ∈M(X,C), then by the lemma, we have ‖ν1 + ν2‖ = |ν1 + ν2|(X) ≤ |ν1|(X) +
|ν2|(X) = ‖ν1‖+ ‖ν2‖.

If ‖ν‖ = 0, then |ν|(X) = 0, so |ν| = 0 by monotonicity. Then ν = 0 because
ν � |ν|.

Theorem 18.2 (Riesz representation). For µ ∈M(X,R), define `µ ∈ C(X,R)∗ by `µ(f) =∫
f dµ. Then µ 7→ `µ is an isometric isomorphism M(X,R)→ C(X,R)∗. The same holds

if we replace R by C.
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Here is a lemma we will need.

Lemma 18.3. If ` ∈ C(X,R)∗, then ` = ϕ − ψ for some positive linear functionals ϕ,ψ
on C(X,R).

Proof. For f ∈ C(X,R) with f ≥ 0, define ϕ(f) = sup{`(g) : 0 ≤ g ≤ f}. For general f
define ϕ(f) := ϕ(f+)−ϕ(f−). We need to show that ϕ is a positive linear functional such
that ϕ ≥ `. Then we can just define ψ := ϕ − `. By definition, we have ϕ(f) ≥ `(f) if
f ≥ 0, which gives us the inequality.

To show that ϕ is a linear functional, we take a few steps:

1. Suppose f, h ≥ 0. Then for all 0 ≤ g1 ≤ f and 0 ≤ g2 ≤ h, we have 0 ≤ g1+g2 ≤ f+h.
So ϕ(f + h) ≥ `(g1) + `(g2) for all such g1, g2. Taking the sup over such g1, g2, we
get ϕ(f + h) ≥ ϕ(f) + ϕ(h).

Conversely, if 0 ≤ g ≤ f + h, define g1 := min{g, f}. If min = f at some x, then
g(x)− g1(x) = g(x)− f(x) ≤ f(x) + h(x)− f(x) ≤ h(x). So g2 := g − g1 ≤ h. Take
the sup over g to get ϕ(f + h) ≤ ϕ(f) + ϕ(h). So we get equality.

2. If f = f+ − f− = g − h for g, h ≥ 0, then f+ + h = g + f−, so step 1 gives
ϕ(f+) + ϕ(h) = ϕ(g) + ϕ(f−), so ϕ(f) = ϕ(f+)− ϕ(f−) = ϕ(g)− ϕ(h).

3. For all f, h, we have f + h = (f+ + h+)− (f− + h−). So ϕ(f + h) = ϕ(f+ + h+)−
ϕ(f− + h−) = (ϕ(f+)− ϕ(f−)) + (ϕ(h+)− ϕ(h−)) = ϕ(f) + ϕ(h). So ϕ is additive.

Similarly, ϕ(λf) = λϕ(f) for all λ ∈ R.

Proof. Definitely, `µ ∈ C(X,K)∗ for all µ ∈M(X,K). Next, suppose ` ∈ C(X,R)∗. Then
` = ϕ−ψ, where ϕ,ψ ≥ 0. By Riesz-Markov, we get ` = `µ1 − `µ2 for some µ1, µ2 ≥ 0. So
` = `µ1−µ2 . If ` ∈ C(X,C), we can represent this as

`(f) = `µ1(Re(f))− i`µ2(i Im(f)) = `µ1−iµ2(f).

It remains to show that ‖`µ‖. Let’s just prove this for the complex case; the real case
is the same argument. We have `µ(f) =

∫
f , dµ, so we get

|`µ(f)| = |
∫
f dµ ≤

∫
|f |d|µ| ≤ ‖f‖u

∫
1 d|µ| = ‖f‖u · ‖u‖.

Let dµ = k d|µ|, where k = dµ/d|µ| is measurable from X → S1. Now use the fact that
for any ε0, there exists f ∈ C(X,C) such that ‖f − k‖L1(|µ|) < ε. We may assume |f | ≤ 1.
Now

`µ(f) =

∫
f dµ =

∫
fk d|µ| ≈ε

∫
kk d|µ| =

∫
1 d|µ| = ‖µ‖.

So ‖`µ‖ ≥ ‖µ‖ − ε for all ε > 0.
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19 Applications of Riesz-Representation to Probability Mea-
sures

19.1 Probability measures on compact metric spaces

Let (X, ρ) be a compact metric space. Since M(X,R) = C(X,R)∗, we may write µ(f) :=∫
f dµ.

Definition 19.1. A probability measure on a measurable space (X,M) us a positive
measure µ such that µ(X) = 1.

On (X, ρ), let P (x) be the collection of probability measures. Then P (X) ⊆M(X,R).

Lemma 19.1. P (x) = {µ ∈ C(X,R)∗ : ‖µ‖ ≤ 1, µ(1X) = 1}, where 1X is the constant 1
function.

Proof. µ ∈ P (X) iff µ ≥ 0 and µ(X) = 1. All the work is in showing ⊇. We just
need to show that if ‖µ‖ ≤ 1 and µ(X) = 1, then µ ≥ 1. Let µ = µ+ − µ− be the
Jordan decomposition of µ. Then µ(X) = µ+(X) − µ−1(X) = 1 , and ‖µ‖ = |µ|(X) =
µ+(X) + µ−(X) ≤ 1. So µ(X) = µ+(X) = 1, and µ− = 0.

Corollary 19.1. P (X) us compact and metrizable in the weak∗ topology.

Proof. P (X) = B∗ ∩ {µ ∈ C(X,R)∗ : µ(1X) = 1}. The latter set is closed, so P (X) is a
weak∗ closed subset of B∗. So Alaoglu’s theorem gives us that P (X) is compact.

Remark 19.1. (B∗, Tweak∗) is metrizable, so C(X,R) is separable (this was a previous
application of Stone-Weierstrass).

Remark 19.2. Here are explicit examples of suitable metrics. Le (fn) be dense in the
unit ball of C(X,R). Then

ρ̃(µ, ν) = max
n

{
2−n

∣∣∣∣∫ fn dµ−
∫
fn dν

∣∣∣∣}
is a metric. The same works if we replace the max by a sum.

Remark 19.3. Embed X → P (X) by sending x 7→ δx. This is a homeomorphic embedding
with this topology. The key point is that xn → x iff f(xn) → f(x) for all f ∈ C(x); that
is,
∫
f dδxn →

∫
f dδx.

Theorem 19.1 (Krylov-Bogoliubov). Let X 6= ∅ be a compact metric space, and let
T : X → X be continuous. Then there exists µ ∈ P (X) such that µ(T−1[A]) = µ(A) for
all A ∈ BX .

56



Proof. Pick x ∈ X. For n ∈ N, define µn := n−1
∑n−1

i=0 δT i(x). Now let µ be limk→∞ µnk
for some subsequence that converges. Then for all f ∈ C(X), we have∫

f dµ = lim
k

∫
f dµnk = lim

k

1

nk

nk−1∑
i=0

f(T i(x)).

Similarly, ∫
f ◦ T dµ = lim

k

1

nk

nk−1∑
i=0

f(T i+1(x)) = lim
k

1

nk

nk∑
i=1

f(T i(x)).

So ∣∣∣∣∫ f dµ−
∫
f ◦ T dµ

∣∣∣∣ = lim
k

1

nk
|f(x)− f(Tnk(x))| ≤ 2‖f‖u

nk
→ 0.

So we get
∫
f dµ =

∫
f ◦T dµ for all f ∈ C(X). This implies that µ is T -invariant (exercise

in regularity).

Remark 19.4. We could write the last step as
∫
f dµ =

∫
f d(T∗µ) for all f ∈ C(X),

where T∗µ is the push-forward measure of µ by T . This gives, µ = T∗µ.

19.2 Probability measures on non-compact metric spaces

What if our metric space is not compact? One nice way to do things is to work in locally
compact spaces. Another important case is to look at complete and separable metric
spaces. In either case, it is no longer true that M(X,R) = C(X,R)∗.

Definition 19.2. Let (X, ρ) be a locally compact metric space with (µn) ⊆ p(X) and
µ ∈ P (X). Then µn → µ vaguely if

∫
f dµn →

∫
f dµ for all f ∈ C0(X,R) (functions

which tend to 0 at ∞). The vague topology is the corresponding topology.

Remark 19.5. The vague topology has a nice Banach space interpretation, but P (X) is
usually no longer compact. We can see this by looking at the embedding of X → P (X).

Remark 19.6. See Folland Proposition 7.19 for an interpretation of the vague topology
of P (R) in terms of F (x) = µ((−∞, x]).

Now suppose X is complete and separable.

Lemma 19.2. If µ ∈ P (X), then for all ε > 0, ther eis a compact K ⊆ X such that
µ(Kc) < ε.

This motivates the following definition.

Definition 19.3. A ⊆ P (X) is tight if for all ε > 0, there exists a compact K ⊆ X such
that µ(Kc) <∞ for all µ ∈ A.
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Theorem 19.2 (Prohorov). Let (µn) be a sequence in P (X), and assume that {µn : n ∈ N}
is tight. Then there is a subsequence (µnk)k and a measure µ ∈ P (X) such that∫

f dµnk
k→∞−−−→

∫
f dµ

for all f ∈ BC(X).

Remark 19.7. Probabilists usually call the topology related to this type of convergence
the weak topology.9 You can instead call this the BC-topology.

9Please try not to do this.
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20 Introduction to Lp Spaces

20.1 Lp spaces and norms

Fix a measure space (XM, µ). We will deal with complex functions, but the real case is
the same.

Definition 20.1. Let 0 < p <∞, and let f : X → C be measurable. The Lp norm10 is

‖f‖p :=

(∫
X
|f |p dµ

)1/p

.

If f doesn’t have a lot of spiky parts in its graph, then the Lp norm of f is about the
value of f . When the graph has huge peaks, as p gets bigger, the spikes are amplified.
Likewise, as p gets bigger, tails of functions are suppressed.

Definition 20.2. The Lp space Lp(X,M, µ) = Lp(µ) = Lp is the space of measurable
functions f : X → C such that ‖f‖p <∞.

Example 20.1. Let X be a countable set with the measure µ, counting measure on
(X,P(X)). Then `p(X) := Lp(µ). As an example,

`p(N) = `p =

{
(xn)n ∈ CN :

∑
n

|xn|p <∞

}
.

Lemma 20.1. For all p ∈ (0,∞), Lp(µ) is a vector space over C.

Proof. If ‖f‖p, ‖g‖p <∞,

|f + g|p ≤ (2 max(|f |, |g|))p = 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p).

So ∫
|f + g|p dµ ≤ 2p

∫
|f |p + 2p

∫
|g|p <∞.

20.2 Lp norm inequalities

Now assume p ≥ 1. We want to show that Lp is a normed space. These inequalities will
help us, but they are very important to know on their own.

Lemma 20.2. If a, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b.

10This is only really a norm when p ≥ 1.
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Proof. Assume a, b,> 0 and take logs:

λ log(a) + (1λ) log(b) ≤ log(λa+ (1− λ)b)

by the convexity of log.

Lemma 20.3 (Hölder’s inequality). Let 1 < p <∞, and define q ∈ (1,∞) by p−1+q−1 = 1.
If f, g : X → C are measurable, then

‖fg‖ ≤ ‖f‖p‖g‖q.

In particular, if f ∈ Lp and g ∈ Lq, then f, g ∈ L1. Equality holds if and only if α|f |p =
β|g|q for some α, β ∈ C not both zero.

Remark 20.1. In the statement of this lemma, q is called the conjugate exponent of p.

Proof. We may assume 9 < ‖f‖p, ‖g‖q < ∞. The inequality holds for γf and λg for
constants γ, λ iff it holds for f, g, so we may replace f, g by f/‖f‖p and g/‖g‖q.11 Let
λ = 1/p, 1− λ = 1/q, and apply the previous inequality:

|f(x)g(x)| = (f(x)p)λ(|g(x)|)1−λ ≤ λ|f(x)|p + (1− λ)|g(x)|q.

Now integrate with respect to µ on both sides.
The equality case, after we do the reduction, is the case where fp = gq.

Lemma 20.4 (Minkowki’s inequality). If 1 ≤ p < ∞, then ‖ · ‖p satisfies the triangle
inequality.

Proof. Assume f > 1, and let r, g ∈ L−. Then

|f + g|p ≤ (|f |+ |g|)|f + g|p−1 =

∫
|f ||f + g|p−1 dµ+

∫
|g||f + g|p−1 dµ

Apply Hölder’s inequality again,

≤ ‖fp‖‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q.

We can now check, using q = p/(p− 1), that

‖|f + g|p‖q =

(∫
|f + g|p(q−1) dµ

)(p−1)/p

=

(∫
|f + g|p dµ

)(p−1)/p

= ‖f + g‖p−1
p .

Corollary 20.1. Let 1 ≤ p <∞.(Lp, ‖ · ‖p) is a normed space.

Proof. We have shown that Lp is a vector space, and ‖ · ‖p satisfies the triangle inequality.
The Lp norm is homogeneous of order 1, and if ‖fp‖ = 0, then

∫
|f |p = 0, which makes

f = 0 µ-a.e.
11Terence Tao says that in situations like this, we have just “spent a symmetry.” In this case, it is a

symmetry under scalar multiplication.
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20.3 Convergence in Lp spaces

Theorem 20.1. Let 1 ≤ p <∞. Then Lp is a Banach space.

Proof. Assume
∑

n fn is absolutely convergent in Lp; i.e.
∑

n ‖fn‖p < ∞. Let Gn =∑n
i=1 |fi| ∈ Lp. It satisfies ‖Gn‖p ≤

∑n
i=1 ‖fi‖p and Gn(x) ↑ G(x), where G is measurable

and [0,∞]-valued. By the monotone convergence theorem, ‖Gn‖p ↑ ‖G‖p. Since ‖Gn‖p ≤∑
n ‖fn‖p, ‖G‖p ≤

∑
n ‖fn‖p. So G is finite a,e,, and G ∈ Lp. So

∑
n fn(x) is absolutely

convergent whenever G(x) <∞ (i.e. a.e.). Let’s call this pointwise limit f . |f |p ≤ |g|p a.e.
so |fp| ∈ L1; that is, |f | ∈ Lp. Finally,∣∣∣∣∣f −

n∑
i=1

fi

∣∣∣∣∣
p

≤ 2p|G|p ∈ L1.

By the dominated convergence theorem,∫
|f −

n∑
i=1

fi|p dµ
n→∞−−−→ 0,

so (∫
|f −

n∑
i=1

fi|p dµ

)1/p
n→∞−−−→ 0.

Proposition 20.1. For 1 ≤ p <∞, the set of integrable simple functions is dense in Lp.

Proof. Let f ∈ Lp. There exist complex-valeued simple functions (ψn)n such that ψn → f
a.e. and |ψ1| ≤ |ψ2| ≤ · · · ≤ |f |. Then |f − ψn|p ≤ 2|f |p ∈ L1, so ‖f − ψn‖ → 0 by the
dominated convergence theorem.

Corollary 20.2. Let m be Lebesgue measure on Rd. Then the collection of functions
f ∈ C(Rd,C) with bounded support is dense in Lp(m).

20.4 L∞ spaces

Definition 20.3. Let (X,M, µ) be a measure space, and let f : X → C be measurable.
The L∞ norm or essential supremum is

‖f‖∞ = ess sup
x
|f(x)| = inf{a ≥ 0 : µ({|f | > a}) = 0}.

Definition 20.4. L∞(µ) is the set of equivalence classes of functions f with ‖f‖∞ < ∞,
under the equivalence realtion of a.e. equality.

Theorem 20.2. L∞ has the following properties:
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1. For all f, g, ‖fg‖q ≤ ‖f‖1‖g‖∞.

2. ‖ · ‖∞ is a norm.

3. L∞ is complete.

4. fn → f in L∞ iff there exists E ∈M with µ(Ec) = 0 such that fn|E → f |E uniformly.

5. The set of simple functions (not necessarily integrable) is dense in L∞.
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21 L∞ Spaces and Duality of Lp Spaces

21.1 Properties of L∞ spaces

Theorem 21.1. L∞ has the following properties:

1. For all measurable f, g, ‖fg‖1 ≤ ‖f‖1‖g‖∞.

2. ‖ · ‖∞ is a norm.

3. L∞ is complete.

4. fn → f in L∞ iff there exists E ∈M with µ(Ec) = 0 such that fn|E → f |E uniformly.

5. The set of simple functions (not necessarily integrable) is dense in L∞.

Remark 21.1. If µ 6≡ 0, we can write

‖f‖∞ := inf{a ≥ 0 : µ({|f | > a}) = 0} = sup{b : µ({|f | > b})}.

The infimum in the definition is attained, but the supremum may not be. Let a = ‖f‖∞.
Let an ↓ 0 and µ{|f | > an} = 0. Now

µ({|f | > a}) = µ

(⋃
n

{|f | > an}

)
= 0.

If a = ‖f‖∞, then µ({|f | > a}) = 0. Define

g =

{
f |f | ≤ a
0 |f | > a.

Now g = f a.e., and ‖g‖u = ‖f‖∞.

Remark 21.2. If µ� ν and ν � µ, then L∞(µ) = L∞(ν).

Remark 21.3. On Rn, the set of continuous functions with bounded support is not dense
in L∞. Indeed, C[0, 1] ⊆ L∞([0, 1],m). Then if f is continuous, ‖f‖∞ = ‖f‖u.

21.2 Duality of Lp spaces

Let (X,M, µ) be a measure space, and let 1 ≤ p <∞. Let q be such that p−1 + q−1 = 1.
So 1 < q ≤ ∞.

Let g ∈ Lq. Then for all f ∈ Lp,∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ ∫ |fg| dµ ≤ ‖f‖p‖g‖q
by Hölder’s inequality. So if we define ϕg : Lp → C sendsing f 7→ f 7→

∫
fg dµ, then

ϕg ∈ (Lp)∗, and ‖ϕg‖(Lp)∗ ≤ ‖g‖Lq .
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Theorem 21.2 (Riesz representation12). If 1 < p <∞, then Lq → (Lp)∗ sending g 7→ ϕg
is an isometric isomorphism. The same is true if p = 1, provided µ is σ-finite.

Remark 21.4. When p = ∞, q = 1. For basically any nontrivial measure, (L∞)∗ is
actually much bigger than L1.

In this lecture, henceforth, µ is a finite measure. The extension to σ-finite measures is
obtained by splitting up the space into countably many pieces and applying these results
to each piece.

Proposition 21.1. If g ∈ Lq, then ‖ϕg‖ = ‖g‖q.

Proof. We have already shown one of the inequalities. If q <∞, (i.e. p > 1), then let

f :=
|g|q−1sgn(g)

‖g‖q−1
q

.

Then, because p(q − 1) = q, we have

|f |p =
|g|q

‖g‖qq
,

so
∫
|f |p = 1. But now

fg =
|g|q

‖g‖q−1
q

|g| sgn(g) =
|g|q

‖g‖qq
,

so
∫
fg = ‖g‖. That is, ‖ϕg‖ = ‖ϕg‖‖f‖p ≥

∫
fg = ‖g‖q.

If q =∞, i.e. g is essentially bounded, let ε > 0. Then 0 < µ({|g| ≥ ‖g‖∞ − ε}) <∞.
Now let

f = 1{|g|≥‖g‖∞−ε}sgn(g).

Then f ∈ L1, and ‖f‖ = µ({|g| ≥ ‖g‖∞ − ε}). Also,∫
fg dµ =

∫
{|g|≥‖g‖∞−ε}

|g|sgn(g) dµ ≥ (‖g‖ − ε)‖f‖,

so ‖ϕg‖ ≥ ‖g‖∞ − ε for all ε > 0.

Remark 21.5. If µ is finite, Lq ⊆ L1 for all q ≥ 1.

Proposition 21.2. Let g ∈ L1, and let Σ be the set of simple functions on X. Then

‖g‖q = sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Σ, ‖f‖p ≤ 1

}
.

12There are many theorems called the Riesz representation theorem, all by the same person. Riesz was
a busy guy.
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Proof. We already have that ‖g‖q is at least as much as the right hand side, so it is enough
to show the reverse.

Step 1: |fg| ≤ RHS for bounded, measurable functions: For all such f , ‖f‖p ≤ 1. Given
this f , there exist simple functions fn → f pointwise such that |fn| ↑ |f |. In particular,
fn ∈ Σ, and ‖fn‖p ≤ 1. Also, fng → fg a.e., and |fng| ≤ |fg| for all n. Then fg ∈ L1

because ‖fg‖1 ≤ ‖f‖∞‖g‖1. So, by the DCT, |
∫
fng| → |

∫
fg|; since the sequence terms

are all bounded by the RHS of the inequality we want to show, so is the limit.
Step 2: ‖g‖q ≤ RHS. Assume q < ∞. There exist simple functions ϕn → g pointwise

such that |ϕn| ↑ |g|. By the previous proposition, there exist simple functions fn such that
‖ϕn‖q = |

∫
fnϕn|. Then, by the monotone convergence theorem,

‖g‖q = lim
n
‖ϕn‖q = lim

n
|
∫
fnϕn| ≤ lim

n

∫
|fn||ϕn| ≤ lim

n

∫
|fn||g| ≤ RHS .

We have shown so far that

‖g‖q = sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Lp, ‖f‖p = 1

}
= sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Σ, ‖f‖p = 1

}
.

We will finish up the rest of the proof next time.
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22 More Lp Duality and Existence of Kernel Operators

22.1 Lp duality, continued

Let’s finish up our proof of Lp duality.

Theorem 22.1. If 1 < p <∞, then the map Lq → (Lp)∗ sending g 7→ ϕg is an isometric
isomorphism. If µ is σ-finite, the same holds for p = 1.

We are covering the case for when µ is finite. Here is a useful lemma.

Lemma 22.1. If µ(X) <∞, then Lp ⊆ L1 for all p ≥ 1.

Proof. By Hölder’s inequality, if f ∈ Lp, then∫
|f | dµ

∫
|f1X | dµ ≤ ‖f‖p‖1X‖q ≤ ‖f‖p(µ(X))1/q.

Last time, we showed the following proposiitions.

Proposition 22.1. ‖ϕg‖(Lp)∗ = ‖g‖Lq

Proposition 22.2. If g ∈ L1 and Σ is the set of simple functions, then

‖g‖q = sup

{∣∣∣∣∫ fg dµ

∣∣∣∣ : f ∈ Σ, ‖f‖p ≤ 1

}
.

In particular, the left hand side is ∞ if and only if the right hand side is, as well.

Now we can complete our proof of the main theorem.

Proof. Let ϕ ∈ (Lp)∗. We proceed in steps:

Step 1: For E ⊆M, define ν(E) := ϕ(1E). This uses the assumption that µ(X) <∞.
We claim that ν is a complex measure on (X,M). We have ν(∅) = ϕ(0) = 0, and
finite additivity is not too hard to check. Let’s check countable additivity. Let
(En)n ⊆ M be disjoint. Then 1

⋃
n En

=
∑

n 1En . To control the tail of this series,
we have ∥∥∥∥∥

∞∑
n=k

1En

∥∥∥∥∥ =
∥∥∥1⋃∞

n=k En

∥∥∥ = µ

( ∞⋃
n=k

En

)1/p

,

which goes to 0 since µ(X) <∞ and p <∞. So by continuity of ϕ on Lp, we have

ν

(⋃
n

En

)
= ϕ

(
1
⋃
n En

)
= ϕ

(∑
n

1En

)
=
∑
n

ν(En).
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Step 2: Also, ν � µ. Indeed, if µ(E) = 0, then 1E = 0 µ-a.e. So ν(E) = 0. By the
Radon-Nikodym theorem, there exists g ∈ L1

C(µ) such that dν = g dµ.

Step 3: If f ∈ Σ, then
∫
fg dµ =

∫
f dν = ϕ(f) by linearity. We know this is bounded

in absolute value by ‖ϕ‖(Lp)∗‖f‖p. Our propositions give us that g ∈ Lq and ‖g‖q ≤
‖ϕ‖(Lp)∗ . We know that that ϕg|Σ = ϕ|Σ. So ϕg = ϕ on a dense subspace of Lp, so
continuity gives that ϕg = ϕ.

Corollary 22.1. If 1 < p <∞, then Lp is reflexive.

Proof. We know 1 < q <∞, so (Lp)∗∗ = (Lq)∗ = Lp.

Remark 22.1. For interesting µ, L1 and L∞ are not reflexive.

22.2 Existence of kernel operators in Lp

Theorem 22.2. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. Suppose

1. K : X × Y → C is measurable,

2. there exists C > 0 such that ‖(x, ·)‖L1(ν) ≤ C for µ-a.e. x,

3. there exists C > 0 such that ‖(·, y)‖L1(µ) ≤ C for ν-a.e. y.

Then there for all p ∈ [1,∞] and f ∈ Lp(ν), the integral

Tf(x) =

∫
Y
K(x, y)f(y) dν(y)

exists µ-a.e., Tf ∈ Lp(µ), and ‖Tf‖Lp(µ) ≤ C‖f‖Lp(ν).

We will check the cases where p 6= 1,∞.

Proof. The conjugate exponent q ∈ (1,∞). Let x ∈ X. Here is the key idea:

|K(x, y)f(y)| = |K(x, y)|1/q
(
|K(x, y)|1/p|f(y)|

)
.

Apply Hölder’s inequality to get∫
|K(x, y)f(y)| dy ≤

(∫
|K(x, y)| dν(y)

)1/q (∫ (
|K(x, y)|1/p|f(y)|

)p)
dν(y)1/p

≤ C1/q

(∫
|K(x, y)||f(g)|p dν(y)

)1/p

.
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By Tonelli’s theorem,∫ [∫
|K(x, y)||f(g)|p dν(y)

]
dµ(x) =

∫ [∫
|K(x, y)| dµ(x)

]
|f(y)|p|f(y)|p dν(y)

≤ C
∫
|f(y)|p dν(y) = C‖f‖Lp(ν).

Overall, we get∫ [∫
|K(x, y)||f(y)| dν(y)

]p
dµ(x) ≤ Cp/q

∫ ∫
|K(x, y)||f(y)|p dν(y) dµ(x)

≤ Cp/qC‖f‖pLp(ν)

= Cp‖f‖pLp(ν).

So Tf(x) is well-defined µ-a.e., and ‖Tf‖pp ≤ LHS ≤ Cp‖f‖pp, so ‖T‖L(Lp,Lp) ≤ C.
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23 Translation Operators and Relationships Between Lp Spaces

23.1 Translation operators on Lp spaces

Let m be Lebesgue measure on Rd, and let t ∈ Rd. Let τt : Rd → Rd send v 7→ v− τ . This
is translation by t, and Lebesgue measure is translation invariant.

Lemma 23.1. The map Tt sending f 7→ f ◦ τt is an isometry Lp(m)→ Lp(m) for all p.

However, the functions Tt are not kernel operators.

Lemma 23.2. Let p <∞. Let (tn)n in Rd be such that tn → 0. Then Ttn → Id on Lp(m)
in the strong operator topology but not in ‖ · ‖op.

Proof. Cc(Rd) is dense in Lp(m). Let f ∈ Lp. Suppose first that f ∈ Cc(Rd). Pick R such
that f |BcR = 0. Given ε > 0, there exists δ > 0 such that if |z−y| < δ =⇒ |f(x)−f(y)| < ε.
If |tn| < δ, then

‖Ttnf − f‖pp =

∫
Rd
|f(x− tn)− f(x)|p dm(x)

=

∫
BR+1

|f(x− tn)− f(x)|p dm(x)

≤ εpm(BR+1)

tn→0−−−→ 0.

Similarly, the map Rd → L(Lp(m), Lp(m)) sending t 7→ Tt is continuous from Rd to the
strong operator topology. For general f ∈ Lp(m), let ε > 0. Choose g inCc(Rd) such that
‖f − g‖p < ε/3. Choose n large enough such that ‖Ttng − g‖p < ε/3. Put together,

‖Ttnf − f‖p ≤ ‖Ttn(f − g)‖+ ‖Ttng − g‖p + ‖f − g‖p
≤ ‖f − g‖+ ‖Ttng − g‖p + ‖f − g‖p
< ε.

Now let’s show that this convergence does not occur in the norm topology. For any
t 6= 0, there exist f ∈ Cc(Rd such that ‖f‖p = 1 and f |Bc

t/2
= 0. Then

‖Ttf − f‖p = 21/p‖f‖p.

23.2 Relationships between Lp spaces

What is the relationship between Lp spaces for different p?

Example 23.1. Look at ((0,∞)),B(0,∞),m). Let 1 ≤ p < q < ∞. Let fa(x) = x−a for
some choice of a > 0. Observe:
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1. The function fa1(0,1) ∈ Lp iff p < 1/a.

2. The function fa1(1,∞) ∈ Lp iff p > 1/a.

So Lp \ Lq 6= ∅, and Lq \ Lp 6= ∅.

Proposition 23.1. If 0 < p < q < r ≤ ∞, then Lq ⊆ Lp + Lr.

Proof. Let f ∈ Lq. Write f = f1{|f |>1} + f1{|f |≤1}. Then

‖f1{|f |>1}‖pp =

∫
‖|f |>1}

|f |p dµ ≤
∫
‖|f |>1}

|f |q dµ ≤
∫
|f |q dµ = ‖fq‖q <∞.

The same holds for f1{|f |≤1}.

Proposition 23.2. If 0 < p < q < r ≤ ∞, then Lp ∩ Lr ⊆ Lq, and ‖f‖q ≤ ‖f‖λp‖f‖1−λr ,
where 1/q = λ(1/p) + (1− λ)(1/r).

Proof. It suffices to prove the inequality.∫
|f |q dµ =

∫
|f |λq|f |(1−λ)q dµ

Use Hölder’s inequality, where 1/s+ 1/t = 1. We will pick the values of s, t later to make
sure they work out.

≤
(∫
|f |λqs dµ

)1/s(∫
|f |(1−λ)qt dµ

)1/t

Pick s = p/(λq) to make things work out as stated in the theorem.

≤ ‖f‖λqp ‖f‖(1−λ)q
r .

There is, however, a case where the tails of functions do not count.

Lemma 23.3. If µ(X) < ∞ and 0 < p < q ≤ ∞, then Lp ⊇ Lq. In particular ‖f‖p ≤
‖f‖qµ(X)1/p−1/q.

Proof. Let f ∈ Lq. Then, by Hölder’s inequality,

‖f‖pp =

∫
|f |p1X dµ ≤ ‖f‖q(µ(X))1/p−1/q.

Lemma 23.4. Let A be any set. Let `p(A) = Lp(A,P(A),#). Then `p ⊆ `q.

Proof. If q =∞, then

sup
α
|f(α)| = (sup

α
|f(α)|p)1/p ≤

(∑
α

|f(α)|p
)1/p

= ‖f‖p.

If p < q <∞, then by the previous lemma,

‖f‖q ≤ ‖f‖λp‖f‖1−λ∞ ≤ ‖f‖λ+1−λ
p = ‖f‖p.
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23.3 Distribution functions

Fix (X,M, µ), and let f : X → C be measurable.

Definition 23.1. The distribution function of f , λf : (0,∞)→ [0,∞], is

λf (α) = µ({|f | > α}).

Proposition 23.3. Let λf be the distribution function of f .

1. λf is non-increasing and right-continuous.

2. If |f | ≤ |g|, then λf ≤ λg.

3. If |fn| ↑ |f |, then λfn(α) ↑ λf (α).

4. If f = g + h, then λf (α) ≤ λg(α/2) + λh(α/2).
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24 Distributions, Weak Lp, Strong Type, and Weak Type

24.1 Distributions

Last time, we introduced the notion of a distribution function λf (α) = µ({|f | > α}).

Definition 24.1. Let f ≥ 0 and µ(X) < ∞. Then the distribution of f is the measure
ν(E) = µ({x ∈ X : f(x) ∈ E}).

Observe that

ν(a, b) = µ({a < f ≤ b}) = λf (a)− λf (b) = [−λf (b)]− [−λf (a)].

So λf determines the measure ν and basically contains all the information about how much
measure the range of f has in given sets.

Proposition 24.1 (Chebyshev’s inequality). Let 0 < p < ∞, and let f ∈ Lp. Then
λf (α) ≤ ‖f‖pp/αp.

Remark 24.1. When p = 1, this is called Markov’s inequality.13

Proof. λf (α) = µ({f > α}) =: µ(Eα). By definition, 1Eαα
p ≤ |f |p. Then

µ(Eα) = αp
∫
1Eα dµ ≤

∫
|f |p dµ.

24.2 Weak Lp

Definition 24.2. If f : X → C, the “weak Lp norm of f is

[f ]p = (sup
α>0

αpλf (α))1/p.

Remark 24.2. This is generally not actually a norm; the triangle inequality fails. Cheby-
shev’s inequality says that

[f ]p ≤ ‖f‖p.

Definition 24.3. The weak Lp space is

wkLp(µ) = {f : X → C | [f ]p <∞}/ ∼,

under the equivalence relation of µ-a.e. equality.

By Chebyshev’s inequality, wkLp ⊇ Lp.
13Markov was Chebyshev’s advisor. Chebyshev is responsible for noticing that the inequality holds in

general.
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Example 24.1. Let m be Lebesgue measure on (0,∞). Consider f(x) = x−1/p. Then
f /∈ Lp(m). But

[fp] = sup
α
m({f > α}) = sup

α
αp = sup

α
m([0, 1/αp))αp = 1

Proposition 24.2. Let 0 < p <∞, and let f : X → C. Then

‖f‖pp =

∫
|f |p dµ = p

∫ ∞
0

αp−1λf (α) dα.

Proof. If there exists α such that λf (α) = ∞, the the right hand side is infinite. By
Chebyshev’s inequality, so is the left hand side. So we may assume that λf (α) <∞ for all
α. Then {f 6= 0} is σ-finite. So we may assume µ is σ-finite.

Now consider E = {(x, y) ∈ X × [0,∞) : y < |f(x)|p}. Now, by Tonelli’s theorem,∫
X
|f |p dµ =

∫
X

∫ |f(x)|p

0
dy dµ(x)

= (µ⊗m)(E)

=

∫ ∞
0

µ({|f |p > y}) = p

∫
αp−1λf (α) dα,

where we have used the substitution y = αp.

24.3 Strong type and weak type

Definition 24.4. LetD be some vector space of measurable C-valued functions on (X,M, µ),
and let T : D → L0(Y,N , ν) (the space of measurable functions. T is sublinear if

1. c > 0 =⇒ |T (cf)| = c|Tf | for all f ∈ D

2. |T (f1 + f2)(x)| ≤ |Tf1(x)|+ |Tf2(x)|.

Example 24.2. Let D = L1
loc. The Hardy-Littlewood maximal operator is

Hf(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy.

Then H(f1 + f2) ≤ Hf1 +Hf2, so H is sublinear.

Remark 24.3. Often, sublinear functions arise from taking the pointwise supremum of a
collection of linear functions.

Definition 24.5. T is strong type (p, q) for 1 ≤ p, q ≤ ∞ if

1. Lp(µ) ⊆ D
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2. T [Lp(µ)] ⊆ Lq(ν), and ‖Tf‖q ≤ C‖f‖p for some fixed C > 0.

Definition 24.6. T is weak type (p, q) for 1 ≤ p, q ≤ ∞ if

1. T [Lp(µ)] ⊆ wkLq(ν)

2. [Tf ]q ≤ C[f ]p for some fixed C > 0.

Example 24.3. H is strong type (,∞,∞). The Hardy-Littlewood maximal inequality
says that H is weak type (1, 1).

Theorem 24.1 (special case of Marciukiewicz’ theorem). Suppose T is sublinear on D =
L1(µ) + L∞(µ). Suppose T is weak type (1, 1) and strong type (∞,∞). Then T is strong
type (p, p) for all p ∈ (0,∞].

Remark 24.4. L1(µ) + L∞(µ) ⊇ Lp(µ) for all p.

Example 24.4. The Hardy-Littlewood maximal operator is strong type (p, p) for all p ∈
[0,∞]. This is very difficult to prove by hand.

Proof. Pick a C such that ‖Tf ∞ ≤ C‖f∞ and [Tf ]1 ≤ C‖f‖1 for all f ∈ L∞ or L1. Let
f ∈ Lp(µ, and let A > 0. Write f = f1 + f2, where f1 = f1{|f |>A} and f2 = f1{|f |≤A}. We
will optimize over the value of A. We have

‖f1‖ =

∫
{|f |>A}

|f | ≤
∫
{|f |>A}

|f |p|
Ap−1

=
Ap−1∫

{|f |>A}
|f |p <∞.

By subliniearity,
|Tf(x)| ≤ |Tf1(x)|+ |Tf2(x)|︸ ︷︷ ︸

≤CA

.

So

µ({|Tf | > 2CA}) ≤ µ({|Tf1 > CA}) ≤ C‖f1‖
CA

=
1

A

∫
{|f |>A}

|f |.

So we have improved the weak type (1, 1) inequality to get

λTf (2CA) ≤ 1

A

∫
{|f |>A}

|f |.

Substitute this expression into the following:

‖Tf‖pp = p

∫ ∞
0

αp−1λTf (α) dα ≤ (2C)p
p

p− 1
‖f‖pp.
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25 Introduction to Hilbert Spaces

25.1 Motivation

Consider (X,M, µ) = ({1, . . . , n},P(X),#). Then LpC(µ) = `p(n) = Cn. In this case, we
are specifying a specific norm:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

These give different shapes for the unit ball; try drawing the unit ball for different values
of p when n = 2.

A linear functional ϕ on Cn has the form

ϕ(x) =
n∑
i=1

xiyi = 〈x, y〉

for some y = (y1, . . . , yn) ∈ Cn. So ϕ ∈ (`p(n))∗; that is, every linear functional is continu-
ous. The Riesz representation theorem says that

‖ϕy‖(`p(n))∗ = sup{|ϕy(x)| : ‖x‖p ≤ 1} = ‖y‖`q ,

where 1/p+ 1/q = 1.
There is a special case, when p = 2. We get that the dual norm is the original norm.

So we can think of `2(n) as its own dual.

Definition 25.1. Let H be a vector space over C. An inner product on H is a map
〈·, ·〉 : H ×H → C sending (x, y) 7→ 〈x, y〉 such that

1. (bilinearity) 〈ax+ by, z〉 = a 〈x, y〉+ b 〈x, z〉 for all a, b ∈ C, x, y, z ∈ H,

2. (conjugate symmetry) 〈x, y〉 = 〈y, x〉,

3. 〈x, x〉 ∈ [0,∞) with 〈x, x〉 = 0 iff x = 0.

Example 25.1. Cn is a vector space with the usual inner product.

Example 25.2. L2
C(µ) is a vector space with the inner product 〈f, g〉 =

∫
X fg dµ.

Example 25.3. Let X = N with counting measure. Then

`2 = `2(N) = {(xn)n :
∑
n

|xn|2 <∞}

has the inner product 〈x, y〉 =
∑

n xnyn.

Definition 25.2. A vector space (H, 〈·, ·〉) is a pre-Hilbert space (or inner product
space).
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25.2 Norms induced by inner products

An inner product space has the associated norm ‖x‖ :=
√
〈x, x〉. First, we have to show

that this is actually a norm.

Lemma 25.1 (Cauchy-Bunyakowski-Schwarz inequality14). For all x, y ∈ H,

| 〈x, y〉 | ≤ ‖x‖‖y‖.

Proof. Consider 〈x− ty, x− ty〉. We get

0 ≤ 〈x− ty, x− ty〉
= 〈x, x〉 − t 〈y, x〉 − t 〈x, y〉+ t2 〈x, y〉
= ‖x‖2 − 2tRe(〈x, y〉) + t2‖y‖2.

This achieves its minimum at t = Re(〈x, y〉)/‖y‖2. So we get

0 ≤ ‖x‖2 − (Re(〈x, y〉))2

‖y‖2
,

which gives
|Re(〈x, y〉)| ≤ ‖x‖‖y‖.

Similarly, let α = sgn(〈x, y〉), an apply this to x and y′ = αy. Then

| 〈x, y〉 | = |Re(x, y′)| ≤ ‖x‖‖y′‖ = ‖x‖‖y‖.

Corollary 25.1. ‖ · ‖ is a norm.

Proof.

‖x+ y‖2 = 〈x+ y, x+ y〉
= ‖x‖2 + 2 Re(〈x, y〉+ ‖y‖2

≤ ‖x2‖+ 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

Definition 25.3. A Hilbert space is a complete pre-Hilbert space.

Example 25.4. All the previous examples are complete.

Proposition 25.1. 〈·, ·〉 : H ×H → C is continuous for the norm topology on H.

14Bunyakowski and Schwarz both knew the general form of this inequality, but, due to geopolitics, there
was no way they could have ever met.
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Proof. Suppose that xn → x in norm and yn → y in norm. Then

| 〈xn, yn〉 − 〈x, y〉 | ≤ | 〈xn − x, yn〉 |+ | 〈x, yn − y〉 |
≤ ‖xn − x‖‖yn‖+ ‖x‖‖yn − y‖
→ 0.

Proposition 25.2 (Parallelogram law). For all x, y ∈ H,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Proof. Expand out 〈x+ y, x+ y〉 and cancel terms.

25.3 Orthogonality

Definition 25.4. Elements x, y ∈ H are orthogonal if 〈x, y〉 = 0.

Definition 25.5. If E ⊆ H, its orthogonal complement is

E⊥ = {x ∈: 〈x, y〉 = 0 ∀y ∈ E}.

Theorem 25.1 (Pythagorean theorem15). If x1, . . . , xn ∈ H are pairwise orthogonal, then∥∥∥∥∥∑
i

xi

∥∥∥∥∥ =
∑
i

‖xi‖2.

Proof. Expand
〈∑

i xi,
∑

j xj

〉
and cancel terms.

Theorem 25.2. Let H be a Hilbert space, and let M be a closed subspace. Then any x ∈ H
can be written uniquely as x = y + z, where y ∈M andz ∈M⊥. We write H = M ⊕M⊥.

Proof. Let δ = inf{‖x− y‖ : y ∈M}. Pick (yn)n in M such that ‖x− yn‖ → δ. We claim
that (yn) is Cauchy. We have

‖yn − ym‖2 + ‖yn + ym − 2x‖2 = 2(‖yn − x‖2 + ‖ym − x‖2).

Rewrite this as

‖yn − ym‖2 + 4

∥∥∥∥yn + ym
2

− x
∥∥∥∥2

︸ ︷︷ ︸
→δ2

= 2(‖yn − x‖2︸ ︷︷ ︸
→δ2

+ ‖ym − x‖2︸ ︷︷ ︸
→δ2

).

This is only possible if ‖yn − ym‖ → 0.
So the limit y = limn yn exists. This is the unique closest point in M to x.

15A person named Pythagoras probably didn’t exist. Nevertheless, the Pytagoreans almost surely did
not know what a Hilbert space is.
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25.4 Isomorphisms of Hilbert spaces

Definition 25.6. A unitary operator U : H1 → H2 is linear operator such that U ∈
L(H1, H2) is an isomorphism and 〈Ux,Uy〉2 = 〈x, y〉1.

This is the true notion of isomorphism for inner product spaces. Next time, we will
prove the following theorem:

Theorem 25.3. Let H be a Hilbert space over C.

1. If dim(H) = n <∞, then H ∼= Cn.

2. If dim(H) =∞ and H is separable, then H ∼= `2(N).

Example 25.5. L2(R) is separable, so L2(R) ∼= `2(N).

Example 25.6. The Fourier transform is the unitary equivalence L2([0, 1]) ∼= `2(Z).
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26 Riesz Represetntation for Hilbert Spaces and Orthonor-
mality

26.1 Riesz representation for Hilbert spaces

Let’s finish up a proof from last time.

Theorem 26.1. Let H be a Hilbert space, and let M be a closed subspace. Then any x ∈ H
can be written uniquely as x = y+ z, where y ∈M and z ∈M⊥. We write H = M ⊕M⊥.

Proof. Let δ = inf{‖x− y‖ : y ∈M}. Pick (yn)n in M such that ‖x− yn‖ → δ. We claim
that (yn) is Cauchy. We have

‖yn − ym‖2 + ‖yn + ym − 2x‖2 = 2(‖yn − x‖2 + ‖ym − x‖2).

Rewrite this as

‖yn − ym‖2 + 4

∥∥∥∥yn + ym
2

− x
∥∥∥∥2

︸ ︷︷ ︸
→δ2

= 2(‖yn − x‖2︸ ︷︷ ︸
→δ2

+ ‖ym − x‖2︸ ︷︷ ︸
→δ2

).

This is only possible if ‖yn − ym‖ → 0. So the limit y = limn yn exists. Moreover,
‖y−x‖ = δ. This point is unique; if we had y, y′ with the same property, the same identity
above gives ‖y − y′‖ = 0.

It now remains to show that z = x − y ∈ M⊥. Suppose not, and choose v ∈ M such
that | 〈z, v〉 | ∈ (0,∞). Now consider

‖x− (y + tv)‖2 = ‖z‖2︸︷︷︸
=δ2

+t2‖v‖2 − 2tRe({z, v}).

This can be made < δ2 unless 〈z, v〉 = 0.

The first part of this proof is appealing to a particular property which does not only
hold just in Hilbert spaces.

Definition 26.1. A Banach space (X , ‖ · ‖) is uniformly convex if for all ε > 0, there
exists a δ > 0 such that whenever x, y ∈ X with ‖x‖ = ‖y‖ = 1, if ‖(x + y)/2‖ > 1 − δ,
then ‖x− y‖ < ε.

Example 26.1. For 1 < p <∞, Lp(R) is uniformly convex.

Theorem 26.2 (Riesz16). For any f ∈ H∗, there exists y ∈ H such that f(x) = 〈x, y〉 and
‖f‖ = ‖y‖.

16This is yet another theorem called the Riesz representation theorem.
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Proof. Assume f 6= 0, and let M = {x : f(x) = 0}. This is a closed, proper subspace of
H. By the previous theorem, there must exist a z ∈ H such that z is orthogonal to M . So
pick z ∈ M⊥ with ‖z‖ = 1. For any x ∈ H, consider u = f(x)z − f(z)x, which lies in M .
So

0 = 〈u, z〉 = f(x) · 1− f(z) 〈x, z〉 .

That is, f(x) = f(z) 〈x, z〉 = 〈x, f(z)z〉 = 〈x, y〉.

Corollary 26.1. Hilbert spaces are reflexive.

26.2 Orthonormality

Definition 26.2. Let (uα)α∈H be a collection of vectors in H. The collection is orthonor-
mal if ‖uα‖ = 1 for all α, and when α 6= β, 〈uα, uβ〉 = 0.

Proposition 26.1 (Bessel’s inequality). If (uα)α is orthonormal in H, then∑
α

| 〈x, uα〉 |2 ≤ ‖x‖.

Remark 26.1. When we are dealing with an uncountable set of vectors, we mean that all
but countably many of them are orthonormal to x, so the sum makes sense.

Proof. Suppose F ⊆ A and |F | <∞. Then

0 ≤

∥∥∥∥∥x−∑
α∈F
〈x, uα〉uα

∥∥∥∥∥ = ‖x‖2 − 2 Re

〈
x,
∑
α∈F
〈x, uα〉uα

〉
+
∑
α∈F
| 〈x, uα〉 |2

= ‖x‖2 − 2
∑
α∈F
| 〈x, uα〉 |2 +

∑
α∈F
| 〈x, uα〉 |2

= ‖x‖2 −
∑
α∈F
| 〈x, uα〉 |2.

Theorem 26.3. Let (uα)α be an orthonormal set in H. The following are equivalent:

1. (completeness17) If 〈x, uα〉 = 0 for all α, then x = 0.

2. (Parseval’s identity) Besel’s inequality is an equality for all x.

3. For all x ∈ H, we have x =
∑

α∈A 〈x, uα〉uα.

Remark 26.2. It is possible for the sum of the lengths in (3) to be infinite, so this sum
is not absolutely convergent. But the sum of the squares must be finite, as shown by part
(b).

17Add this to the list of the most overused words in mathematics.
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Proof. (1) =⇒ (3). Pick x. Bessel’s inequality gives ‖x‖2 ≥
∑

α | 〈x, uα〉 |2. So
there are only countably many nonzero terms. Enumerate them as α1, α2, . . . . Consider∑n

i=1 〈x, uαi〉uαi . If m > n,∥∥∥∥∥
m∑

i=n+1

〈x, uαi〉uαi

∥∥∥∥∥ =
m∑

i=n+1

| 〈x, uα〉 |2
n,m→∞−−−−−→ 0.

So
∑n

i=1 〈x, uαi〉uαi is a Cauchy sequence, so it converges to some y. Now y = x because
for all α,

〈y, α〉 =

{
〈x, uα〉 α = αi for some i

0 = 〈x, uα〉 α /∈ {α1, α2, . . . }.

This implies y = x by (a).
(3) =⇒ (2): Look that ∥∥∥∥∥x−

n∑
i=1

〈x, uαi〉uαi

∥∥∥∥∥ .
This is the gap we found in Bessel’s inequality. So we get Parseval in the limit as n→∞.

(2) =⇒ (1): If ‖x‖2 =
∑

α | 〈x, uα〉 |2, and the left hand side is nonzero, then there
exists α such that 〈x, uα〉 6= 0.

Definition 26.3. Any orthonormal set satisfying the previous theorem is a basis.

Theorem 26.4. Any Hilbert space H has an orthonormal basis.

Proof. Use Zorn’s lemma.

Remark 26.3. A basis is also a maximal orthonormal set.

Proposition 26.2. H is separable if and only if it has a countable basis.

Theorem 26.5. Let H be a Hilbert space over C.

1. If dim(H) = n <∞, then H ∼= Cn.

2. If dim(H) =∞ and H is separable, then H ∼= `2(N).

Proof. Suppose dim(H) = ∞. Pick a basis {u1, u2, u3, . . . }. For each x ∈ H, map
x 7→ (〈x, u1〉 , 〈x, u2〉 , . . . ) ∈ `2. Parseval’s identity says exactly that this is a unitary
equivalence.
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